

Benutzerhandbuch

UR5/CB3

Übersetzung der originalen Anleitungen (de)

UNIVERSAL ROBOTS

Benutzerhandbuch

UR5/CB3

Version 3.3.0

Übersetzung der originalen Anleitungen (de)

Seriennummer UR5/CB3: _

Die hier enthaltenen Informationen sind Eigentum von Universal Robots A/S und dürfen nur im Ganzen oder teilweise vervielfältigt werden, wenn eine vorherige schriftliche Genehmigung von Universal Robots A/S vorliegt. Diese Informationen können jederzeit und ohne vorherige Ankündigung geändert werden und sind nicht als Verbindlichkeit von Universal Robots A/S auszulegen. Dieses Handbuch wird regelmäßig geprüft und überarbeitet.

Universal Robots A/S übernimmt keinerlei Verantwortung für jedwede Fehler oder Auslassungen in diesem Dokument.

Copyright ©2009–2016 by Universal Robots A/S

Das Logo von Universal Robots ist eine eingetragene Handelsmarke von Universal Robots A/S.

Inhaltsverzeichnis

Vo	orwort															ix
	Verpa	ackungsinhalte														ix
	Wich	tiger Sicherheitshinweis														x
	Lesei	n dieses Handbuchs														x
	Wo S	ie weitere Informationen finden														x
Ι	Har	dware-Installationshandbuch														I-1
1	Siche	erheits-														I-3
	1.1	Einleitung														I-3
	1.2	Gültigkeit und Verantwortung														I-3
	1.3	Haftungsbeschränkung														I-4
	1.4	Warnsymbole in diesem Handbuch														I-4
	1.5	Allgemeine Warnungen und Sicherheitshinweise.		•												I-5
	1.6	Verwendungszweck		•	•			•	•						•	I-8
	1.7	Risikobewertung		•					•						•	I-9
	1.8	Notabschaltung	•	•	•		•	•	•	•					•	I-11
	1.9	Bewegung ohne Antriebskraft		•	•	•	•	•	•				•	•	•	I-11
2	Siche	erheitsrelevante Funktionen und Schnittstellen														I-13
4	2.1	Einleitung														I-13
	2.1	Nachlaufzeiten des Sicherheitssystems	·	•	·	•	•	•	•	•	•	•	•	•	•	I-14
	2.3	Begrenzungs-Sicherheitsfunktionen		•	•	•	•	•	•	•		•	•		•	I-14
	2.4	Sicherheitsmodi														I-16
	2.5	Sicherheitsrelevante elektrische Schnittstellen														I-17
		2.5.1 Sicherheitsrelevante elektrische Eingänge														I-17
		2.5.2 Sicherheitsrelevante elektrische Ausgänge														I-19
2	Trom		-	-	-	-	-	-	-	-	-	-	-	-	-	T 01
3	Ifalls	sport														1-21
4	Mecl	nanische Schnittstelle														I-23
	4.1	Einleitung	•	•	•	•	•	•	•	•	•	•	•	•	•	I-23
	4.2	Wirkungsbereich des Roboters	•	•	•	•	•	•	•	•	•	•	•	•	•	I-23
	4.3	Montage	•	•	•	•	•	•	•	•	•	•	•	•	•	I-23
	4.4	Maximale Nutzlast	•	•	·	•	•	•	•	•	•	•	•	•	•	I-28
5	Elek	trische Schnittstelle														I-29
	5.1	Einleitung														I-29
	5.2	Elektrische Warnungen und Sicherheitshinweise														I-29
	5.3	Controller-E/A														I-32
		5.3.1 Gemeinsame Spezifikationen für alle Digita	l-E	/A	ι.											I-33
		5.3.2 Sicherheits-E/A														I-34

		5.3.3 Digital-E/A für allgemeine Zwecke	I-38
		5.3.4 Digitaleingang durch eine Taste	I-38
		5.3.5 Kommunikation mit anderen Maschinen oder einer SPS	I-39
		5.3.6 Analog-E/A für allgemeine Zwecke	I-39
		5.3.7 EIN-/AUS-Fernsteuerung	I-41
	5.4	Werkzeug-E/A	I-42
		5.4.1 Digitalausgänge des Werkzeugs	I-43
		5.4.2 Digitaleingänge des Werkzeugs	I-44
		5.4.3 Analogeingänge des Werkzeugs	I-45
	5.5	Ethernet.	I-46
	5.6	Netzanschluss	I-46
	5.7	Roboteranschluss	I-47
6	Wartu	ing und Reparatur	I-49
	6.1	Sicherheitsanweisungen	I-49
7	Entso	orgung und Umwelt	I-51
8	Zertif	fizierungen	I-53
	8.1	Zertifizierungen von Drittparteien	I-53
	8.2	Erklärungen im Einklang mit EU-Richtlinien	I-53
9	Gewä	ihrleistung	I-55
	9.1	Produktgewährleistung	I-55
	9.2	Haftungsausschluss	I-56
A	Nach	laufzeit und -strecke	I-57
	A.1	Stopp-Kategorie 0 Nachlaufzeiten und -strecken	I-57
B	Erklä	rungen und Zertifikate	I-59
	B.1	CE/EU Declaration of Incorporation (original)	I-59
	B.2	CE/EU-Herstellererklärung (Übersetzung des Originals)	I-60
	B.3	Sicherheitszertifikat	I-61
	B.4	Umweltverträglichkeitszertifikat	I-62
	B.5	EMV-Prüfung	I-63
C	Ange	wandte Normen	I-65
D	Techr	nische Spezifikationen	I-73
п	Pol	vScone-Handhuch	II_1
	101		11-1
10	Siche	rheitskontiguration	II-3
	10.1	Emiertung	II-3
	10.2	Anderung der Sicherheitskonfiguration	II-5
	10.3	Sicherheitssynchronisation und Fehler.	11-5
	10.4		11-6 11 -
	10.5		II-7
	10.6	Sicherheitsmodi	11-7

	10.7	Freedrive-Modus	II-8
	10.8	Passwortsperre	II-8
	10.9	Übernehmen	II-8
	10.10	Allgemeine Grenzwerte	II-9
	10.11	Gelenkgrenzen	I-12
	10.12	Grenzen	I-13
		10.12.1 Auswählen einer zu konfigurierenden Grenze	I-14
		10.12.2 3D-Visualisierung	I-15
		10.12.3 Sicherheitsebenenkonfiguration	I-15
		10.12.4 Werkzeuggrenzkonfiguration	1-19
	10.13	Sicherheits-E/A.	1-21
		10.13.1 Eingangssignale	1-21
		10.13.2 Ausgangssignale	1-23
11	Progr	ammierung starten I	I-25
	11.1	Einleitung	I-25
	11.2	Erste Schritte	I-26
		11.2.1 Installation des Roboterarms und des Controllers	I-26
		11.2.2 Ein- und Ausschalten des Controllers	I-26
		11.2.3 Ein- und Ausschalten des Roboterarms.	I-27
		11.2.4 Schnellstart	I-27
		11.2.5 Das erste Programm	I-28
	11.3	PolyScope-Programmierschnittstelle	I-29
	11.4	Startbildschirm	I-31
	11.5	Initialisierungsbildschirm	I-32
12	Bilds	chirm-Editoren I	I-35
	12.1	Ausdruckseditor auf dem Bildschirm	I-35
	12.2	Bearbeitungsanzeige "Pose"	I-35
13	Robo	ter-Steuerung I	I-39
	13.1	Move-Tab	I-39
		13.1.1 Roboter	I-39
		13.1.2 Funktion und Werkzeugposition	1-40
		13.1.3 Bewegung des Werkzeuges	1-40
		13.1.4 Bewegung der Gelenke	1-40 1-40
	10.0	13.1.5 Freedrive	1-40 1-41
	13.2		1-41
	13.3	MODBUS-Client-E/A	1-42 1-42
	13.4	Automove-rab	1-43 1-43
	13.5	Installation \rightarrow Laden/ Speichern	1-44 T 45
	13.0	1361 Hinzufügen Ändern und Entformen von TCPs	1-43 1-45
		13.6.2 Standard TCP und aktiver TCP	1-40 Т ЛС
		13.6.3 TCP-Position and an and an and a statements and a	1-40 1- <i>14</i>
		13.6.4 TCP-Austrichtung anlernen	1-40 1-47
		13.65 Nutzlact	1-42 1-42
			1 TU

	13.6.6 Schwerpunkt	II-48
13.7	Installation \rightarrow Montage	II-48
13.8	Installation \rightarrow E/A-Einstellung	II-50
13.9	Installation \rightarrow Sicherheit	II-51
13.1	0 Installation \rightarrow Variablen	II-51
13.1	1 Installation \rightarrow MODBUS-Client-E/A-Einstellung	II-52
13.1	2 Installation \rightarrow Funktionen	II-55
13.1	3 Einrichtung der Fließbandverfolgung	II-59
13.1	4 Installation \rightarrow Standardprogramm	II-60
	13.14.1 Laden eines Standardprogramms	II-61
	13.14.2 Starten eines Standardprogramms	II-61
	13.14.3 Auto-Initialisierung	II-61
13.1	5 "Protokoll"-Tab	II-62
13.1	6 "Laden" - Anzeige	II-62
13.1	7 "Aktivbetrieb"Tab	II-65
14 D roc		II 67
14 FI0	Nouce Programm	II-07
14.1	Programm" Tab	II-07 II 68
14.2	14.21 Programmetruktur	II-00
	14.2.2. Programmausführungsanzoigo	II-60
	14.2.3 Schaltfläche Suchen"	II-69
	14.2.4 Rückgängig / Erneut ausführen - Taste	II-09
	14.2.5 Programm-Dashboard	II-70
14 3		II-70 II-71
14.4	Refehl·Leer	II-72
14 5	Befehl: Move	II-73
14.6	Befehl: Fester Wegpunkt	II-76
14.7	Befehl: Relativer Wegpunkt.	II-82
14.8	Befehl: Variabler Wegpunkt:	II-83
14.9	Befehl: Warten	II-84
14.1	0 Befehl: Finstellen	II-84
14.1	1 Befehl: Meldung.	II-85
14.1	2 Befehl: Halt	II-86
14.1	3 Befehl: Kommentar	II-86
14.1	4 Befehl: Ordner	II-87
14.1	5 Befehl: Schleife	II-88
14.1	6 Befehl: Unterprogramm	II-89
14.1	7 Befehl: Zuordnung	II-90
14.1	8 Befehl: If	II-91
14.1	9 Befehl: Script	II-92
14.2	0 Befehl: Ereignis	II-93
14.2	1 Befehl: Thread	II-94
14.2	2 Befehl: Switch	II-95
14.2	3 Befehl: Muster	II-96
14.2	4 Befehl: Kraft	II-97
14.2	5 Befehl: Palettieren	II-100

14.22	7 Befehl: Fließbandverfolgung	II-105
14.28	8 Befehl: Unterdrücken	II-105
14.29	9 Grafik-Tab	II-105
14.30	0 Struktur-Tab	II-107
14.3	1 "Variablen"-Tab	II-108
14.32	2 Befehl: Variablen-Initialisierung	II-109
15 Set-	up-Bildschirm I	[I-111
15.1	Sprachen und Einheiten	II-112
15.2	Roboter aktualisieren	II-113
15.3	Passwort festlegen	II-114
15.4	Bildschirm kalibrieren	II-115
15.5	Netzwerk einstellen	II-116
15.6	Uhrzeit einstellen	II-116
15.7	URCaps-Einstellung	II-117

.

.

14.26 Befehl: Suchen

Glossar

Index

II-121

II-119

UNIVERSAL ROBOTS

.

II-101

Vorwort

Herzlichen Glückwunsch zum Erwerb Ihres neuen Universal Robot, UR5.

Der Roboter kann zur Bewegung eines Werkzeugs programmiert werden und mit anderen Maschinen über elektrische Signale kommunizieren. Sein Arm besteht aus stranggepressten Aluminiumrohren und Gelenken. Über unsere patentierte Programmieroberfläche, PolyScope, ist die Programmierung des Roboters zur Bewegung eines Werkzeugs entlang eines gewünschten Weges einfach.

Verpackungsinhalte

Wenn Sie einen kompletten Roboter bestellen, erhalten Sie zwei Verpackungen. Eine beinhaltet den Roboterarm, die andere enthält die folgenden Artikel:

- Controller mit Teach Pendant;
- Montagevorrichtung für den Controller;
- Montagevorrichtung für das Teach Pendant;
- Schlüssel zum Öffnen des Controllers;
- Für Ihre Region kompatibles Netzkabel;
- Werkzeugkabel;
- Stylus-Stift mit Laser;
- UR Produktionsprüfzertifikat;
- Dieses Handbuch.

Wichtiger Sicherheitshinweis

Der Roboter ist eine *unvollständige Maschine* (siehe 8.2) und daher ist eine Risikobewertung für jede Installation des Roboters erforderlich. Es ist besonders wichtig, dass alle Sicherheitsanweisungen in Kapitel 1 befolgt werden.

Lesen dieses Handbuchs

Dieses Handbuch enthält Anweisungen für die Installation und Verwendung des Roboters. Dieser besteht aus den folgenden Teilen:

Hardware-Installationshandbuch: Mechanische und elektrische Installation des Roboters.

PolyScope-Handbuch: Programmierung des Roboters.

Dieses Handbuch richtet sich an den Integrator, von dem erwartet wird, dass er über eine mechanische und elektrische Grundausbildung verfügt. Es ist ebenfalls hilfreich, jedoch nicht zwingend erforderlich, mit den elementaren Konzepten des Programmierens vertraut zu sein. Es sind keine speziellen Kenntnisse über Roboter im Allgemeinen oder Universal Robots im Speziellen erforderlich.

Wo Sie weitere Informationen finden

Die Support-Webseite (http://www.universal-robots.com/support), die allen UR Vertriebshändlern zur Verfügung steht, enthält zusätzliche Informationen, wie zum Beispiel:

- Andere Sprachversionen dieses Handbuchs:
- Das PolyScope-Handbuch, nach einem Update auf die neuste Version.
- Das *Wartungshandbuch* mit Anleitungen zur Fehlerbehebung, Wartung und Reparatur des Roboters.
- Das Skripthandbuch für erfahrene Benutzer.
- Das URCAPS, bei dem Zubehör erworben werden kann.

Teil I

Hardware-Installationshandbuch

1.1 Einleitung

Dieses Kapitel enthält wichtige Sicherheitsinformationen, die vom Integrator von UR-Robotern gelesen und verstanden werden müssen, **bevor** der Roboter zum ersten Mal eingeschaltet wird.

Die ersten Unterabschnitte in diesem Kapitel sind allgemeiner und die folgenden Unterabschnitte enthalten spezifischere technische Daten, die relevant für die Einrichtung und das Programmieren des Roboters sind.

Es ist von wesentlicher Bedeutung, dass alle Montageanweisungen und Anleitungen aus anderen Kapiteln und Teilen dieses Handbuchs beachtet und befolgt werden.

Kapitel 2 beschreibt und definiert sicherheitsrelevante Funktionen, die insbesondere für kollaborative Anwendungen relevant sind. Die Anweisungen und Hinweise in diesem Kapitel und Abschnitt 1.7 sind von besonderer Bedeutung.

Insbesondere zu beachten sind Texte im Zusammenhang mit Warnsymbolen.

1.2 Gültigkeit und Verantwortung

Die Informationen decken jedoch nicht ab, wie eine Roboteranwendung konzipiert, installiert oder betrieben werden soll und decken darüber hinaus nicht alle peripheren Geräte ab, die die Sicherheit des kompletten Systems beeinflussen können. Das komplette System muss im Einklang mit den Sicherheitsanforderungen aus den Normen und Vorschriften des Landes konzipiert und installiert werden, in dem der Roboter installiert wird.

Die Integratoren von UR Robotern sind verantwortlich dafür, sicherzustellen, dass die geltenden Sicherheitsbestimmungen und -vorschriften ihres Landes beachtet werden und dass hohe Gefährdungsrisiken in der kompletten Roboteranwendung vermieden werden.

Dies beinhaltet, beschränkt sich jedoch nicht auf:

- Durchführung einer Risikobewertung für das komplette System:
- Kopplung von anderen Maschinen und zusätzlichen Sicherheitsbauteilen, wenn durch Risikobewertung definiert;
- Einrichtung der angemessenen Sicherheitseinstellungen in der Software;
- Sicherstellung, dass der Benutzer keine Sicherheitsmaßnahmen verändert;
- Validierung, dass das gesamte System korrekt konzipiert und installiert ist;
- Spezifizierung der Nutzungsanweisungen;
- Markierung der Roboterinstallation mit entsprechenden Kennzeichnungen und Kontaktinformationen des Integrators;

• Sammlung aller Unterlagen in einer technischen Dokumentation, einschließlich der Risikobewertung und dieses Handbuchs.

Eine Anleitung, wo geltende Normen und Bestimmungen zu finden sind und was sie bedeuten, finden Sie unter http://universal-robots.com/support/

1.3 Haftungsbeschränkung

Die in diesem Handbuch angegebenen Informationen hinsichtlich der Sicherheit gelten nicht als Zusicherung durch UR, dass der industrielle Manipulator keine Verletzungen oder Schäden verursachen wird, selbst wenn alle Sicherheitsanweisungen eingehalten werden.

1.4 Warnsymbole in diesem Handbuch

Die nachstehende Tabelle definiert die Beschriftungen zur Spezifizierung der Gefahrebenen, die in diesem Handbuch verwendet werden. Die gleichen Warnsignale werden auch auf dem Produkt verwendet.

GEFAHR:

Dies weist auf eine unmittelbare Gefährdungssituation durch Elektrizität hin, die, wenn nicht vermieden, zum Tod oder schweren Verletzungen führen kann.

GEFAHR:

Dies weist auf eine unmittelbare Gefährdungssituation hin, die, wenn nicht vermieden, zum Tod oder schweren Verletzungen führen kann.

WARNUNG:

Dies weist auf eine potentielle Gefährdungssituation durch Elektrizität hin, die, wenn nicht vermieden, zu Verletzungen oder größeren Geräteschäden führen kann.

WARNUNG:

Dies weist auf eine potentielle Gefährdungssituation hin, die, wenn nicht vermieden, zu Verletzungen oder großen Geräteschäden führen kann.

WARNUNG:

Dies weist auf eine potentiell gefährdende, heiße Oberfläche hin, die bei Berührung Verletzungen verursachen kann.

VORSICHT:

Dies weist auf eine Gefährdungssituation hin, die, wenn nicht vermieden, zu Geräteschäden führen kann.

1.5 Allgemeine Warnungen und Sicherheitshinweise

Dieser Abschnitt enthält einige allgemeine Warnungen und Sicherheitshinweise. Einige von ihnen werden in anderen Teilen des Handbuchs wiederholt oder erklärt. Wiederum andere Warnungen und Sicherheitshinweise finden sich im gesamten Handbuch wieder.

GEFAHR:

Stellen Sie sicher, dass der Roboter und alle elektrischen Geräte entsprechend den Spezifikationen und Warnungen aus den Kapiteln 4 und 5 installiert werden.

WARNUNG:

- 1. Vergewissern Sie sich, dass der Roboterarm und das Werkzeug ordnungsgemäß und sicher verschraubt sind.
- 2. Gewährleisten Sie, dass ausreichend Platz vorhanden ist, damit sich der Roboterarm frei bewegen kann.
- 3. Stellen Sie sicher, dass die Sicherheitsmaßnahmen und / oder Roboter-Sicherheitskonfigurationsparameter, wie in der Risikobewertung festgelegt, eingestellt wurden, um die Programmierer, Anwender und umstehende Personen zu schützen.
- 4. Tragen Sie bei der Arbeit mit dem Roboter keine weite Kleidung oder Schmuck. Langes Haar muss bei der Arbeit mit dem Roboter zurückgebunden sein.
- 5. Verwenden Sie den Roboter niemals, falls er beschädigt ist.
- 6. Wenn die Software einen schwerwiegenden Fehler anzeigt, aktivieren Sie sofort die Notabschaltung, notieren Sie sich die Umstände, die zu dem Fehler geführt haben, finden Sie die zugehörigen Fehlercodes auf dem Protokollbildschirm und kontaktieren Sie Ihren Anbieter.
- 7. Schließen Sie keine Sicherheitsgeräte an einfache E/A an. Verwenden Sie nur sicherheitsrelevante Schnittstellen.
- Stellen Sie sicher, dass Sie die richtigen Installationseinstellungen verwenden (z. B. Roboterwinkel, Gewicht in TCP, TCP-Offset und Sicherheitskonfiguration). Speichern und laden Sie die Installationsdatei zusammen mit dem Programm.
- 9. Die Freedrive-Funktion (Impedanz/Zurückfahren) sollte nur bei Installationen verwendet werden, in denen die Risikobewertung dies zulässt. Werkzeuge und Hindernisse sollten keine scharfen Kanten oder Klemmpunkte haben. Stellen Sie sicher, dass sich Kopf und Gesicht umstehender Personen nicht in Reichweite des Roboters befindet.
- 10. Achten Sie auf Roboterbewegung, wenn Sie das Teach-Pendant verwenden.
- 11. Betreten Sie nicht den Sicherheitsbereich des Roboters und berühren Sie den Roboter nicht, wenn das System in Betrieb ist.

- 11. Kollisionen können eine hohe kinetische Energie freisetzen, die bei hohen Geschwindigkeiten und hohen Nutzlasten noch wesentlich höher sind. (Kinetische Energie = $\frac{1}{2}$ Masse · Geschwindigkeit²)
- 12. Das Kombinieren verschiedener Maschinen kann Gefahren erhöhen oder neue Gefahren schaffen. Führen Sie stets eine Gesamtrisikobewertung für die komplette Installation durch. Wenn verschiedene Sicherheitsstopp- und Notabschaltungs-Leistungsebenen benötigt werden, wählen Sie immer die höchste Leistungsebene. Es ist stets erforderlich, die Handbücher für alle in der Installation verwendeten Geräte gelesen und verstanden zu haben.
- 13. Verändern Sie den Roboter niemals. Eine Veränderung kann Gefahren schaffen, die für den Integrator unkalkulierbar sind. Jeder autorisierte Wiederzusammenbau hat unter Einhaltung der neuesten Version aller relevanten Wartungshandbücher zu erfolgen. UNIVERSAL ROBOTS SCHLIESST JEGLICHE HAFTUNG AUS, WENN DAS PRODUKT IN IRGENDEI-NER ART UND WEISE VERÄNDERT WURDE.
- 14. Wenn der Roboter mit einem zusätzlichen Modul (z. B. Euromap67-Schnittstelle) erworben wird, lesen Sie zunächst das jeweilige Handbuch zu dem Modul.

WARNUNG:

- 1. Der Roboter und der Controller generieren Hitze während des Betriebs. Bedienen und berühren Sie den Roboter nicht während er sich in Betrieb befindet oder unmittelbar nach dem Betrieb. Schalten Sie den Roboter aus und warten Sie eine Stunde, damit er abkühlen kann.
- 2. Stecken Sie niemals Finger hinter die interne Abdeckung des Controllers.

VORSICHT:

- Wenn der Roboter mit Maschinen kombiniert wird oder mit Maschinen arbeitet, die den Roboter beschädigen könnten, wird ausdrücklich empfohlen, alle Funktionen und das Roboterprogramm separat zu prüfen. Es wird empfohlen, das Roboterprogramm unter Verwendung temporärer Wegpunkte außerhalb des Wirkungsbereichs anderer Maschinen zu prüfen. Universal Robots kann nicht für Schäden am Roboter oder anderen Geräten haftbar gemacht werden, wenn diese durch Programmierfehler oder eine Fehlfunktion des Roboters verursacht wurden.
- 2. Setzen Sie den Roboter keinen permanenten Magnetfeldern aus. Sehr starke Magnetfelder können den Roboter beschädigen.

1.6 Verwendungszweck

UR Roboter sind für die industrielle Bedienung von Werkzeugen und Aufsätzen oder die Verarbeitung oder das Transferieren von Komponenten und Produkten bestimmt. Für Details zu den Umgebungsbedingungen, in denen der Roboter eingesetzt werden sollte, siehe Anhang B und D.

UR Roboter sind mit speziellen sicherheitsrelevanten Funktionen ausgestattet, die für den kollaborativen Betrieb, also für den Betrieb des Roboters ohne Zäune und/oder zusammen mit einem Menschen konzipiert sind.

Der kollaborative Betrieb ist nur für Anwendungen vorgesehen, in denen die komplette Anwendung, einschließlich des Werkzeugs, Werkstücks, Hindernisse und anderer Maschinen laut Risikobewertung der Anwendung frei von hohen Gefährdungsrisiken ist.

Jede Nutzung oder Anwendung, die von dem Verwendungszweck abweicht, wird als unzulässiger Fehlgebrauch erachtet. Dies beinhaltet, beschränkt sich jedoch nicht auf:

- Nutzung in potentiell explosionsgefährdeten Umgebungen
- Nutzung in medizinischen und lebenswichtigen Anwendungen
- Nutzung vor Durchführung einer Risikobewertung
- Nutzung mit ungenügenden Leistungsebenen
- Nutzung bei Anwendungen, in denen die Reaktionszeiten der Sicherheitsfunktionen unzureichend sind
- Nutzung als Steighilfe;
- Betrieb außerhalb der zulässigen Betriebsparameter.

1.7 Risikobewertung

Eine Risikobewertung durch den Integrator ist unerlässlich. In vielen Ländern ist dies gesetzlich vorgeschrieben. Der Roboter selbst ist eine unvollständige Maschine, da die Sicherheit der Roboterinstallation davon abhängt, wie der Roboter integriert wird (z. B. Werkzeug, Hindernisse und andere Maschinen).

Es wird empfohlen, dass der Integrator für die Durchführung der Risikobewertung die Richtlinien der Normen ISO 12100 und ISO 10218-2 nutzt. Im Übrigen kann die technische Spezifikation ISO/TS 15066 als zusätzliche Orientierung verwendet werden.

Die Risikobewertung durch den Integrator hat alle Arbeitsabläufe über die gesamte Lebensdauer des Roboters hinweg zu berücksichtigen, einschließlich, aber nicht beschränkt auf:

- Programmierung des Roboters während des Aufbaus und der Entwicklung der Roboterinstallation
- Fehlersuche und Wartung
- Normaler Betrieb der Roboterinstallation.

Eine Risikobewertung muss durchgeführt werden, **bevor** der Roboterarm zum ersten Mal eingeschaltet wird. Ein Teil der durch den Integrator durchzuführenden Risikobewertung ist, die richtigen Sicherheitskonfigurationseinstellungen sowie die Notwendigkeit zusätzlicher Not-Aus-Schalter und/oder andere für die spezifische Roboteranwendung erforderlichen Schutzmaßnahmen zu identifizieren.

Die Festlegung der richtigen Sicherheitskonfigurationseinstellungen ist ein zentraler Inhalt bei der Entwicklung kollaborierender Roboteranwendungen. Siehe Kapitel 2 und Teil II für detaillierte Informationen.

Einige sicherheitsrelevante Funktionen sind speziell für kollaborative Roboteranwendungen ausgelegt. Diese Funktionen sind über die Sicherheitskonfigurationseinstellungen konfigurierbar und besonders relevant, wenn es um spezifische Risiken in der Risikobewertung durch den Integrator geht:

- Kraft und Leistungsbegrenzung: Diese werden verwendet, um Klemmkräfte und -drücke in Bewegungsrichtung für den Fall einer Kollisionen zwischen dem Roboter und dem Bediener zu reduzieren.
- Drehmomentbegrenzung: Diese wird verwendet, um hohe Übergangsenergien und Stoßkräfte bei Kollisionen zwischen Roboter und Bediener durch Verringern der Robotergeschwindigkeit zu reduzieren.
- Gelenk- und TCP Positionsbegrenzung: Wird insbesondere dazu verwendet, um Gefährdungen bestimmter Körperteile zu reduzieren. z.B. um Bewegungen in Richtung Kopf und Hals während der Einrichtung und Programmierung zu vermeiden.
- Begrenzung von TCP und Werkzeugausrichtung: Wird insbesondere dazu verwendet, um Risiken im Zusammenhang mit bestimmten Bereichen und Funktionen des Werkzeugs oder Werkstücks zu verringern. z.B. um zu vermeiden, dass scharfkantige Gegenstände den Bediener gefährden.

• Geschwindigkeitsbegrenzung: Wird insbesondere dazu verwendet, eine niedrigere Geschwindigkeit des Roboterarms zu gewährleisten. z.B. um dem Bediener ausreichend Zeit zu geben, einen Kontakt mit dem Roboterarm zu vermeiden.

Die Anwendung der richtigen Sicherheitskonfigurationseinstellungen ist mit der Verschraubung des Roboters und dem Anschluss sicherheitsrelevanter Geräte an sicherheitsrelevante E/As gleich zu stellen. Der Integrator hat dafür zu sorgen (z.B. durch einen Passwortschutz), dass es Unbefugten nicht möglich ist, Änderungen an der Sicherheitskonfiguration vorzunehmen.

Bei der Bewertung der Risiken in einer kollaborativen Roboteranwendung sind folgende Punkte unerlässlich:

- Schweregrad der einzelnen, möglichen Kollisionen
- Wahrscheinlichkeit des Auftretens einzelner, möglicher Kollisionen
- Maßgaben zur Vermeidung einzelner, möglicher Kollisionen

Ist der Roboter in einer nichtkollaborierenden Roboteranwendung installiert, in der die Gefährdungen und Risiken mit der Verwendung der integrierten Sicherheitsfunktionen (z.B. bei Verwendung eines gefährlichen Werkzeug) nicht angemessen beseitigt bzw. reduziert werden können, so hat die Risikobewertung des Integrators dahingehend zu lauten, dass zusätzliche Schutzmaßnahmen erforderlich sind (z.B. eine Sicherungsvorrichtung, um den Integrator während der Inbetriebnahme und Programmierung zu schützen.)

Universal Robots hat die unten stehenden potentiell bedeutenden Gefahren als Gefahren erkannt, die vom Integrator beachtet werden müssen. Bitte beachten Sie, dass andere bedeutende Risiken in einer speziellen Roboter-Installation vorhanden sein könnten.

- 1. Einklemmen von Fingern zwischen Roboterfuß und Basisgelenk (Gelenk 0).
- Einklemmen von Fingern zwischen Handgelenk 1 und 2 (Gelenk 3 und Gelenk 4).
- 3. Offene Wunden durch scharfe Kanten oder Ecken auf Werkzeug oder Werkzeug-Anschluss.
- 4. Offene Wunden durch scharfe Kanten oder Ecken auf Hindernissen in der Nähe des Roboters.
- 5. Blutergüsse durch Schlag vom Roboter.
- 6. Verstauchung oder Knochenbruch zwischen einer schweren Nutzlast und einer harten Oberfläche.
- 7. Auswirkungen als Folge lockerer Schrauben, die den Roboterarm oder das Werkzeug halten.
- 8. Werkstücke, die aus dem Werkzeug fallen, beispielsweise aufgrund eines unzureichenden Griffs oder einer Stromunterbrechung.
- 9. Fehler durch unterschiedliche Not-Aus-Schalter für unterschiedliche Maschinen.

10. Fehler durch nicht autorisierte Änderungen an den Sicherheitskonfigurationsparametern.

Informationen über Nachlaufzeiten und -strecken finden Sie in Kapitel 2 und Anhang A.

1.8 Notabschaltung

Betätigen Sie den Not-Aus-Schalter, um unverzüglich alle Roboterbewegungen zu stoppen.

Die Notabschaltung darf nicht als Mittel zur Risikominderung eingesetzt werden, sondern als sekundäres Schutzgerät.

Die Risikobewertung der Roboter-Anwendung sollte beinhalten, ob weitere Notabschaltungstasten erforderlich sind. Not-Aus-Taster müssen den Anforderungen der IEC 60947-5-5-Norm entsprechen. Sie dazu auch Abschnitt 5.3.2.

1.9 Bewegung ohne Antriebskraft

Im unwahrscheinlichen Fall einer Notfallsituation, in der ein oder mehrere Robotergelenke bewegt werden müssen und die Stromzufuhr zum Roboter entweder nicht möglich oder nicht gewollt ist, gibt es zwei Möglichkeiten, um eine Bewegung der Robotergelenke zu erzwingen:

- Erzwungenes Zurückfahren: Ziehen oder drücken Sie den Roboterarm kräftig (500 N), um ein Gelenk zu bewegen. Jede Gelenkbremse verfügt über eine Rutschkupplung, mit der eine Bewegung bei hohem Zwangsdrehmoment ermöglicht wird.
- Manuelles Lösen der Bremsen: Entfernen Sie die Gelenkabdeckung, indem Sie die M3-Schrauben herausschrauben, mit denen diese gehalten wird. Lösen Sie die Bremse, indem Sie den Bolzen am kleinen Elektromagneten drücken, siehe unten stehende Abbildung.

WARNUNG:

- Das manuelle Bewegen des Roboterarms ist nur f
 ür dringende Notf
 älle gedacht und kann zu Sch
 äden an den Gelenken f
 ühren.
- 2. Das manuelle Lösen der Bremse kann aufgrund der Schwerkraft das Herabstürzen des Roboterarms bewirken. Sorgen Sie vor dem Lösen der Bremse immer für eine Abstützung des Roboterarms, Werkzeugs und Werkstückes.

2.1 Einleitung

UR Roboter sind mit einer Reihe von eingebauten, sicherheitsrelevanten Funktionen sowie mit sicherheitsrelevanten elektrischen Schnittstellen ausgestattet, die dem Anschluss an andere Geräte und an zusätzliche Sicherheitsgeräte dienen. Jede Sicherheitsfunktion und Schnittstelle wird gem. ISO13849-1:2008 (siehe Kapitel 8 für Zertifizierungen): überwacht. Die Überwachung dieser Funktionen wird mit dem Performance Level d (PLd) sicher gestellt.

GEFAHR:

Andere Sicherheitskonfigurationsparametern als die in der Risikobewertung des Integrators festgelegten, können in Gefahren und Risiken resultieren, die sich nicht angemessen und hinreichend beseitigen bzw. verringern lassen.

Siehe Kapitel 10, Teil II für die Konfiguration der sicherheitsrelevanten Funktionen sowie Eingänge und Ausgänge in der Benutzerschnittstelle. Siehe Kapitel 5 für die Anleitung, wie Sie Sicherheitsgeräte an die elektrische Schnittstelle anschließen.

HINWEIS:

- 1. Die Verwendung und Konfiguration von sicherheitsrelevanten Funktionen und Schnittstellen muss gemäß der Risikobewertung erfolgen, die der Integrator für eine bestimmte Roboteranwendung durchführt (siehe Abschnitt 1.7 in Kapitel 1).
- 2. Meldet der Roboter einen Fehler oder eine Überschreitung im Sicherheitssystem (z. B. ein durchtrenntes Kabel im Notabschaltungs-Stromkreis oder die Verletzung einer sicherheitsrelevanten Funktion), so wird ein Stopp der Kategorie 0 eingeleitet. Die ungünstigste Zeitspanne (Worst Case) im Falle einer Notabschaltung des Roboters finden Sie am Ende dieses Kapitels. Diese Zeitangabe sollte bei der Risikobewertung durch den Integrator berücksichtigt werden.

Der Roboter verfügt über eine Reihe von sicherheitsrelevanten Funktionen, die dazu verwendet werden können, die Bewegung der Gelenke und des Roboters zu begrenzen *Werkzeugmittelpunkt* (TCP). Der TCP ist der Mittelpunkt des Ausgangsflanschs inkl. TCP-Offset

Limitierungs-Sicherheitsfunktionen sind:

Limitierungs- Beschreibung Sicherheitsfunktionen	
Sicherheitsfunktionen	
Gelenkposition Min. und max. Winkelposition des Gelenks	
Gelenkgeschwindigkeit Max. Winkelgeschwindigkeit des Gelenks	
TCP-Position Grenzebenen der TCP-Position des Roboters im kartes. Raum	
TCP- Max. TCP- Geschwindigkeit des Roboters	
Geschwindigkeit	
TCP-Kraft Max. TCP- Schubkraft des Roboters	
Drehmoment Max. Schwung des Roboterarms	
Leistung Max. angewandte Roboterarmleistung	

2.2 Nachlaufzeiten des Sicherheitssystems

Die Nachlaufzeit des Sicherheitssystems ist die Spanne, die der Roboter benötigt, bis er nach einem Fehler oder der Grenzwertüberschreitung einer sicherheitsrelevanten Funktion zum Stillstand kommt und die mechanischen Bremsen betätigt wurden.

Die maximalen Nachlaufzeiten in der Tabelle sind zu berücksichtigen, wenn die Sicherheit der Anwendung auf der Anhaltezeit des Roboters beruht. Führt beispielsweise ein Fehler am Roboter zum kompletten Stillstand einer Produktionsstraße und haben dort bestimmte Maßnahmen unmittelbar zu erfolgen, so sind die maximalen Nachlaufzeiten unbedingt zu berücksichtigen.

Die Messungen werden mit der folgenden Konfiguration des Roboters durchgeführt:

- Streckung: 100% (der Roboterarm ist horizontal voll ausgestreckt).
- Geschwindigkeit: Die TCP-Geschwindigkeitsgrenze des Sicherheitssystems ist auf den beschriebenen Grenzwert gesetzt.
- Nutzlast: maximal am TCP anzubringende Nutzlast wird vom Roboter bewegt (5kg).

Die Worst-Case-Nachlaufzeit für einen Stopp der Kategorie¹ 0 im Falle einer Überschreitung der Sicherheitsgrenzwerte oder Schnittstellen sind in der folgenden Tabelle ersichtlich.

TCP-Geschwindigkeitsbegrenzung	Maximale Nachlaufzeit
1.0 m/s	450 ms
1.5 m/s	500 ms
2.0 m/s	550 ms
1.5 m/s	600 ms
3.0 m/s	650 ms

2.3 Begrenzungs-Sicherheitsfunktionen

Die erweiterte Pfadsteuerungssoftware senkt die Geschwindigkeit oder veranlasst einen Programmausführungsstopp, wenn der Roboterarm sich einer sicherheitsre-

¹Nachlaufzeit-Kategorien gemäß IEC 60204-1, siehe Glossar für weitere Details.

levanten Grenze nähert. Überschreitungen der Grenzwerte treten daher nur in Ausnahmefällen auf. Sollte eine Sicherheitsgrenze überschritten werden, veranlasst das Sicherheitssystem einen Stopp der Kategorie 0.

		Worst-	-Case-Szenario	
Limitierungs-	Richtigkeit	Erkennungszeit	Abschaltzeit	Reaktionszeit
Sicherheitsfunktionen				
Gelenkposition	1.15°	100 ms	1000 ms	1100 ms
Gelenkgeschwindigkeit	1.15°/s	250 ms	1000 ms	1250 ms
TCP-Position	20 mm	100 ms	1000 ms	1100 ms
TCP-Ausrichtung	1.15°	100 ms	1000 ms	1100 ms
TCP-	50mm/s	250 ms	1000 ms	1250 ms
Geschwindigkeit				
TCP-Kraft	25 N	250 ms	1000 ms	1250 ms
Drehmoment	3 kg m/s	250 ms	1000 ms	1250 ms
Leistung	10 W	250 ms	1000 ms	1250 ms

Das System gilt als *deaktiviert*, sobald die 48 V Bus-Spannung ein elektrisches Potential von weniger als 7,3 V hat. Die Abschaltzeit ist die Dauer zwischen der Erfassung eines Ereignisses und dem Zeitpunkt, ab dem das System als deaktiviert gilt.

WARNUNG:

Bei der Kraftbegrenzungsfunktion gibt es zwei Ausnahmen, die beim Einrichten des Wirkungsbereichs des Roboters unbedingt zu beachten sind. Diese sind in Abbildung 2.1 dargestellt. Wenn sich der Roboter streckt, kann der Kniegelenk-Effekt bei niedrigen Geschwindigkeiten zu hohen Kräften in radialer Richtung vom Fußflansch führen. Auch wenn sich das Werkzeug in der Nähe des Fußflansches und tangential (um) den Fußflansch herum bewegt, können bei niedrigen Geschwindigkeiten hohe Kräfte wirken. Die Quetschgefahr kann beispielsweise dadurch verringert werden, dass Hindernisse in diesen Bereichen entfernt werden, der Roboter anders platziert wird oder eine Kombination von Sicherheitsebenen und Gelenkgrenzen festgelegt wird, die eine Bewegung des Roboters in diesem Teil seines Wirkungsbereichs verhindern.

WARNUNG:

Wird der Roboter in Applikationen mit handgeführten Linearbewegungen verwendet, muss das Tempolimit für Gelenke auf maximal 40 Grad pro Sekunde bei Fuß- und Schultergelenk festgeschrieben werden, es sei denn, eine Risikobewertung zeigt, dass Geschwindigkeiten über 40 Grad pro Sekunde akzeptabel sind. Dies verhindert schnelle Bewegungen des Roboter-Ellbogens in der Nähe von Singularitäten.

Abbildung 2.1: Bestimmte Teile des Wirkungsbereichs bergen aufgrund der physikalischen Eigenschaften des Roboterarms erhöhte Quetschgefahr. Dazu gehört bei radialen Bewegungen das Handgelenk 1, wenn es mindestens 750 mm vom Fußflansch des Roboters entfernt ist. Der andere Teil befindet sich bei Tangentialbewegung innerhalb von 200 mm vom Fußflansch des Roboters.

2.4 Sicherheitsmodi

Normaler und reduzierter Modus Das Sicherheitssystem verfügt über zwei konfigurierbare Sicherheitsmodi: *Normal* und *Reduziert*. Für jeden dieser zwei Modi können Sicherheitsgrenzen konfiguriert werden. Der reduzierte Modus ist aktiv, wenn sich der TCP des Roboters in einer *Reduzierten Modus auslösen*-Ebene befindet oder durch einen konfigurierbaren Eingang ausgelöst wird.

Auf der Seite der *Reduzierten Modus auslösen*-Ebenen, auf denen die Grenzwerte des normalen Modus gelten, gibt es einen Bereich von 20 mm, in dem die Grenzwerte des reduzierten Modus akzeptiert werden. Wenn der reduzierte Modus durch einen Sicherheitseingang ausgelöst wird, gelten beide Grenzwertsätze für 500 ms.

Wiederherstellungsmodus Wenn ein Sicherheitsgrenzwert überschritten wird, muss das Sicherheitssystem neu gestartet werden. Befindet sich das System beim Start jenseits einer Sicherheitsgrenze (z. B. jenseits der Positionsgrenze eines Gelenks), wird der *Wiederherstellungsmodus* aktiviert. Im Wiederherstellungsmodus ist es nicht möglich, Programme für den Roboter auszuführen. Der Roboterarm kann jedoch mit dem *Freedrive*-Modus oder über den "Bewegen"-Tab im PolyScope (siehe Teil II,,PolyScope-Handbuch") von Hand wieder zurück in seinen zulässigen Wirkungsbereich bewegt werden. Die Sicherheitsgrenzwerte des *Wiederherstellungsmodus* sind:

Limitierungs-Sicherheitsfunktionen	Grenzwert
Gelenkgeschwindigkeit	30°/s
TCP-Geschwindigkeit	250mm/s
TCP-Kraft	100 N
Drehmoment	10 kg m/s
Leistung	80 W

Das Sicherheitssystem veranlasst einen Stopp der Kategorie 0, falls einer dieser Grenzwerte überschritten wird.

WARNUNG:

Beachten Sie, dass die Grenzwerte der *Gelenkposition*, der *TCP-Position* und der *TCP-Ausrichtung* im Wiederherstellungsmodus deaktiviert sind. Lassen Sie beim Zurückbewegen des Roboterarms in seinen zulässigen Wirkungsbereich äußerste Vorsicht walten.

2.5 Sicherheitsrelevante elektrische Schnittstellen

Der Roboter ist mit mehreren sicherheitsrelevanten elektrischen Ein- und Ausgängen ausgestattet. Alle sicherheitsrelevanten elektrischen Ein- und Ausgänge sind zweikanalig (redundant). Sie sind im sicheren Zustand, wenn sie "LOW" sind. Das heißt, die Notabschaltung ist nicht aktiv, wenn das Signal HIGH ist (+24 V).

2.5.1 Sicherheitsrelevante elektrische Eingänge

Die folgende Tabelle enthält einen Überblick über die sicherheitsrelevanten elektrischen Eingänge.

Sicherheitseingang	Beschreibung
Roboter-Notabschaltung	Führt einen Stopp der Kategorie 1 aus und informiert
	andere Maschinen über den System-Notabschaltungs
	ausgang.
Not-Aus-Schalter	Führt einen Stopp der Kategorie 1 aus und informiert
	andere Maschinen über den System-Notabschaltungs
	ausgang.
System-Notabschaltung	Führt einen Stopp der Kategorie 1 aus.
Schutzstopp	Führt einen Stopp der Kategorie 2 aus.
Schutz-Reset-Eingang	Setzt den Roboterbetrieb aus dem Schutzstopp-Status
	fort, wenn eine Flanke im Schutz-Reset-Eingang auf-
	tritt.
Reduzierter Modus	Das Sicherheitssystem aktiviert die Grenzwerte des Re-
	duzierten Modus.
3-Punkt-Schalter	Wirkt als Schutzstopp-Eingang, wenn der
	Betriebsarten-Eingang high ist.
Betriebsart	Zu verwendende Betriebsart, wenn ein 3-stufiges Akti-
	vierungsgerät konfiguriert ist.

Stopps der Kategorie 1 und 2 bremsen den Roboter unter aktiver Antriebskraft ab, wodurch der Roboter stoppt, ohne von seiner Bahn abzuweichen.

Abbildung 2.2: Der grüne Bereich unterhalb der Rampe markiert die zulässigen Geschwindigkeiten für ein Gelenk beim Bremsen. Zum Zeitpunkt 0 wird ein Ereignis (Notabschaltung oder Schutzstopp) am Sicherheitsprozessor erfasst. Der Abbremsvorgang beginnt nach 24 ms.

Überwachung der Sicherheitseingänge Stopps der Kategorie 1 und 2 werden durch das Sicherheitssystem wie folgt überwacht:

- 1. Das Sicherheitssystem stellt fest, dass der Bremsvorgang innerhalb von 24 ms auslöst, siehe Abbildung 2.2.
- 2. Wenn ein Gelenk in Bewegung ist, wird seine Geschwindigkeit überwacht, um sicherzustellen, dass sie niemals höher ist als die Geschwindigkeit, die durch das ständige Abbremsen von der maximalen Geschwindigkeitsgrenze des Gelenks des *Normalen* Modus auf 0 rad/s in 500 ms erhalten wird.
- 3. Wenn sich ein Gelenk in Ruhe befindet (Geschwindigkeit des Gelenks kleiner als 0,2 rad/s), wird es überwacht, um sicherzustellen, dass es sich nicht mehr als 0,05 rad von der Position wegbewegt, an der eine Geschwindigkeit von weniger als 0,2 rad/s gemessen wurde.

Zusätzlich überwacht das Sicherheitssystem bei einem Stopp der Kategorie 1, dass der Abschaltvorgang innerhalb von 600 ms durchgeführt wird, nachdem der Roboterarm die Ruhestellung eingenommen hat. Ebenso ist nach einer Schutzstoppauslösung die Fortsetzung der Roboterarmbewegung nur möglich, nachdem eine positive Flanke am Schutz-Reset-Eingang erfasst wurde. Ist eine dieser Eigenschaften nicht erfüllt, veranlasst das Sicherheitssystem einen Stopp der Kategorie 0.

Ein Übergang zum *Reduzierten* Modus, ausgelöst durch den Eingang des Reduzierten Modus, wird wie folgt überwacht:

- 1. Das Sicherheitssystem erlaubt die Festlegung beider Sätze von Sicherheitsgrenzwerten für den *Normalen* und den *Reduzierten Modus* für 500 ms, nachdem der Eingang des Reduzierten Modus ausgelöst wurde.
- 2. Nach 500 ms sind nur die Grenzwerte für den Reduzierten Modus wirksam.

Ist eine dieser Eigenschaften nicht erfüllt, veranlasst das Sicherheitssystem einen Stopp der Kategorie 0.

Das Sicherheitssystem führt einen Stopp der Kategorie 0 mit Wirkung wie in der folgenden Tabelle beschrieben aus: Die Reaktionszeit im Worst Case (maximale Reaktionszeit) ist die Zeit, die benötigt wird, um den Roboter bei maximaler Nutzlast von der maximalen Betriebsgeschwindigkeit zu stoppen und deaktiviert zu machen (d. h. ihn auf ein elektrisches Potential von weniger als 7,3 V zu bringen).

		Worst-Case-Szena	rio
Sicherheitseingangsfunktio	nErkennung	szeit Abschaltzeit	Reaktionszeit
Roboter-Notabschaltung	250 ms	1000 ms	1250 ms
Not-Aus-Schalter	250 ms	1000 ms	1250 ms
System-Notabschaltung	250 ms	1000 ms	1250 ms
Schutzstopp	250 ms	1000 ms	1250 ms

2.5.2 Sicherheitsrelevante elektrische Ausgänge

Die folgende Tabelle enthält einen Überblick über die sicherheitsrelevanten elektrischen Ausgänge.

System-Notal	sgang	Beschreit	oung	
	bschaltung	LOW, w	enn der Notabschaltungs Eingang LOW ist ode	er
		der Not-A	Aus-Schalter betätigt wird.	
Roboter bewe	egt sich	Solange o	dieses Signal HIGH ist, bewegt sich kein Ge	e-
		lenk des	Roboterarms um mehr als 0,1 rad.	
Roboter stop	ot nicht	HIGH, w	venn der Roboter aufgrund einer Notabscha	1-
		tung ode	er eines Schutzstopps angehalten wurde ode	er
		im Begrif	ff ist anzuhalten. Ansonsten ist es LOW.	
Reduzierter N	Aodus	LOW, we	enn sich das Sicherheitssystem im Reduzierter	1-
		Modus b	efindet.	
Nichtreduzie	rter Modus	Negierter	r Reduzierter Modus-Ausgang.	
Si	cherheitsaus	ang	Worst Case-Reaktionszeit	
Sy	stem-Notabs	1 1.	1100 ms	
R		chaltung	1100 110	
п	oboter beweg	chaltung t sich	1100 ms	
K	oboter beweg oboter stoppt	chaltung t sich nicht	1100 ms 1100 ms	
R	oboter beweg oboter stoppt eduzierter Mo	chaltung t sich nicht odus	1100 ms 1100 ms 1100 ms	
R	oboter beweg oboter stoppt eduzierter Mo ichtreduzierte	chaltung t sich nicht odus er Modus	1100 ms 1100 ms 1100 ms 1100 ms	
Ri Ri	oboter beweg oboter stoppt eduzierter Mo ichtreduzierte	chaltung t sich nicht odus er Modus	1100 ms 1100 ms 1100 ms 1100 ms	
Ri Ri 	oboter beweg oboter stoppt eduzierter Mo ichtreduzierte	chaltung t sich nicht odus er Modus	1100 ms 1100 ms 1100 ms 1100 ms	
Ri Ri N	oboter beweg oboter stoppt eduzierter Ma ichtreduzierte	chaltung t sich nicht odus er Modus	1100 ms 1100 ms 1100 ms 1100 ms	
Ri Ri N	oboter beweg oboter stoppt eduzierter Mo ichtreduziert	chaltung t sich nicht odus er Modus	1100 ms 1100 ms 1100 ms 1100 ms	

Worst Case-Reaktionszeit
1100 ms

3 Transport

Transportieren Sie den Roboter in der Originalverpackung. Bewahren Sie das Verpackungsmaterial an einem trockenen Ort auf, für den Fall dass Sie den Roboter vielleicht später noch einmal abbauen und transportieren.

Heben Sie beide Rohre des Roboterarms gleichzeitig an, wenn Sie ihn von der Verpackung zum Ort der Installation bewegen. Halten Sie den Roboter in Stellung, bis alle Montageschrauben am Fußflansch des Roboters sicher festgezogen sind.

Der Controller sollte am Griff angehoben und getragen werden.

WARNUNG:

- Sorgen Sie dafür, dass Sie sich beim Heben der Geräte nicht verheben. Verwenden Sie geeignete Hebegeräte. Alle regionalen und nationalen Richtlinien zum Heben sind zu befolgen. Universal Robots kann nicht für Schäden haftbar gemacht werden, die durch den Transport der Geräte verursacht wurden.
- 2. Stellen Sie sicher, dass der Roboter gemäß der Montageanleitung in Kapitel 4 montiert wird.

4.1 Einleitung

Dieser Abschnitt beschreibt die Grundlagen der Montage der verschiedenen Teile des Robotersystems. Den Anweisungen für die elektrische Installation in Kapitel 5 ist Folge zu leisten.

4.2 Wirkungsbereich des Roboters

Der Wirkungsbereich des UR5Roboters erstreckt sich bis zu 850 mm vom Basisgelenk. Bitte beachten Sie bei der Auswahl eines Aufstellungsortes für den Roboter unbedingt das zylindrische Volumen direkt über und unter dem Fuß. Eine Bewegung des Werkzeugs in der Nähe des zylindrischen Volumens sollte möglichst vermieden werden, da sich die Robotergelenke schnell bewegen müssen, obwohl sich das Werkzeug langsam bewegt. Dadurch arbeitet der Roboter ineffizient und die Durchführung der Risikobewertung ist schwieriger.

4.3 Montage

Roboterarm Der Roboterarm wird mithilfe von vier M8 Schrauben montiert, die in den vier 8.5 mm-Löchern des Roboterfußes befestigt werden. Es wird empfohlen, diese Schrauben mit 20 N m Drehmoment festzuziehen. Für eine sehr genaue Neupositionierung des Roboterarms sind zwei Ø8 Löcher zur Verwendung mit einem Stift vorgesehen. Darüber hinaus ist ein genaues Gegenstück des Fußes als Zubehörteil verfügbar. Abbildung 4.1 zeigt die Stelle, an der die Löcher zu bohren und die Schrauben zu montieren sind.

Montieren Sie den Roboter auf einer stabilen Oberfläche, die mindestens das Zehnfache des normalen Drehmoments des Fußflanschgelenks und mindestens das Fünffache des Gewichts des Roboterarms aushalten kann. Darüber hinaus sollte die Oberfläche vibrationsfrei sein.

Wird der Roboter auf einer linearen Achse oder einer sich bewegenden Plattform montiert, dann sollte die Beschleunigung der sich bewegenden Montagebasis sehr niedrig sein. Eine hohe Beschleunigung kann verursachen, dass der Roboter anhält, da er denkt, dass er mit etwas zusammengestoßen ist.

GEFAHR:

Vergewissern Sie sich, dass der Roboterarm ordnungsgemäß und sicher festgeschraubt ist. Die Montageoberfläche sollte stabil sein.

VORSICHT:

Wenn der Roboter über längere Zeit in Kontakt mit Wasser kommt, kann er beschädigt werden. Der Roboter sollte nicht im Wasser oder einer feuchten Umgebung montiert werden.

Werkzeug Der Werkzeugflansch des Roboters verfügt über vier Löcher mit M6-Gewinde zur Befestigung des Werkzeugs am Roboter. Die Löcher müssen mit 9 N m angezogen werden. Wenn eine sehr genaue Montage des Werkzeugs angestrebt wird, kann das Ø6-Loch mit einem Stift verwendet werden. Abbildung 4.2 zeigt die Stelle, an der die Löcher zu bohren und die Schrauben zu montieren sind.

GEFAHR:

- 1. Vergewissern Sie sich, dass das Werkzeug ordnungsgemäß und sicher festgeschraubt ist.
- 2. Stellen Sie sicher, dass das Werkzeug so konstruiert ist, dass es keine Gefährdung darstellt, indem sich beispielsweise unerwartet ein Teil löst.

Controller Der Controller kann an der Wand angebracht oder auf den Boden gestellt werden. Ein freier Raum von 50 mm zu beiden Seiten wird für einen ausreichenden Luftstrom benötigt. Zusätzliche Halterungen zur Anbringung sind optional erhältlich.

Teach Pendant Das Teach Pendant kann an eine Wand oder an den Controller gehängt werden. Zusätzliche Halterungen zur Anbringung des Teach Pendant sind optional erhältlich. Stellen Sie sicher, dass niemand über das Kabel stolpern kann.

Surface on which the robot is fitted. It should be flat within ±0.05mm

Abbildung 4.1: Löcher zur Montage des Roboters. Verwenden Sie vier M8 Schrauben. Alle Maßangaben sind in mm.

Abbildung 4.2: Der Werkzeugflansch, ISO 9409-1-50-4-M6. Hier wird das Werkzeug an die Spitze des Roboters montiert. Alle Maßangaben sind in mm.

GEFAHR:

- Stellen Sie sicher, dass der Controller, das Teach Pendant und die Kabel nicht in direkten Kontakt mit Flüssigkeit kommen. Ein nasser Controller kann zum Tod führen.
- 2. Der Controller und das Teach Pendant dürfen nicht in staubigen oder feuchten Umgebungen, welche die Schutzart IP20 überschreitet, eingesetzt werden. Achten Sie auch besonders auf die Bedingungen in Umgebungen mit leitfähigem Staub.

4.4 Maximale Nutzlast

Die maximal zulässige Nutzlast des Roboterarms hängt von der *Schwerpunktverschiebung* ab, siehe Abbildung 4.3. Die Abweichung des Schwerpunktes ist definiert als der Abstand zwischen der Mitte des Werkzeugflanschs und dem Schwerpunkt.

Abbildung 4.3: Beziehung zwischen der maximal zulässigen Nutzlast und der Schwerpunktverschiebung.

5.1 Einleitung

Dieses Kapitel beschreibt alle elektrischen Schnittstellen des Roboterarms und des Controllers.

Die verschiedenen Schnittstellen sind je nach Zweck und Eigenschaften in fünf Gruppen unterteilt:

- Controller-E/A
- Werkzeug-E/A
- Ethernet
- Netzanschluss
- Roboteranschluss

Der Begriff "E/A" bezieht sich sowohl auf digitale als auch analoge Steuersignale von oder zu einer Schnittstelle.

Die fünf Gruppen sind in den folgenden Abschnitten beschrieben. Für den Großteil der E/A sind Beispiele angegeben.

Die Warnungen und Sicherheitshinweise des folgenden Abschnitts gelten für alle fünf Gruppen und müssen unbedingt beachtet werden.

5.2 Elektrische Warnungen und Sicherheitshinweise

Die folgenden Warnungen und Sicherheitshinweise sind bei der Erstellung und Installation einer Roboteranwendung zu beachten. Die Warnungen und Sicherheitshinweise gelten auch für Wartungsarbeiten.

GEFAHR:

- Schließen Sie Sicherheitssignale niemals an eine SPS an, bei der es sich nicht um eine Sicherheits-SPS mit entsprechendem Sicherheitslevel handelt. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da eine der Sicherheitsstoppfunktionen übersteuert werden kann. Sicherheitsschnittstellensignale sind von den normalen E/A-Schnittstellensignalen getrennt zu verlegen.
- 2. Alle sicherheitsrelevanten Signale sind redundant aufgebaut (zwei unabhängige Kanäle). Halten Sie die beiden Kanäle getrennt, damit eine einzelne Störung nicht zum Verlust der Sicherheitsfunktion führen kann.
- 3. Einige E/A im Controller können entweder als normal oder als sicherheitsrelevant konfiguriert werden. Machen Sie sich mit Abschnitt 5.3 vertraut.

GEFAHR:

- 1. Stellen Sie sicher, dass alle nicht wassergeschützten Geräte trocken bleiben. Sollte Wasser in das Produkt gelangt sein, trennen Sie alle Stromversorgungen bzw. schalten Sie sie ab. Kontaktieren Sie dann Ihren Händler oder Integrator.
- 2. Verwenden Sie nur die mit dem Roboter bereitgestellten Originalkabel. Setzen Sie den Roboter nicht für Anwendungen ein, bei denen die Kabel Biegungen ausgesetzt sind. Kontaktieren Sie Ihren Händler, sollten Sie längere oder biegsame Kabel benötigen.
- 3. Nullanschlüsse sind mit "GND" (Erdung) bezeichnet und werden an die Schirmung des Roboters und an den Controller angeklemmt. Alle markierten Erdungsanschlüsse (GND) sind nur für die Stromversorgung und Signalgebung konzipiert. Verwenden Sie die mit Erdungssymbolen gekennzeichneten M6-Schraubverbindungen als PE (Schutzerde) im Inneren des Controllers. Die Nennstromstärke des Masseverbinders sollte nicht unter der höchsten Stromstärke des Systems liegen.
- 4. Bei der Installation der Schnittstellenkabel an den Roboter-E/A ist sorgfältig vorzugehen. Die Metallplatte am unteren Teil ist für Schnittstellenkabel und Anschlüsse bestimmt. Entfernen Sie die Platte, bevor Sie die Löcher bohren. Stellen Sie sicher, dass vor der erneuten Montage der Platte alle Späne entfernt worden sind. Denken Sie daran, die korrekten Verschraubungsgrößen zu verwenden.

VORSICHT:

- 1. Der Roboter wurde gemäß internationalen IEC-Standards auf EMV (elektromagnetische Verträglichkeit) getestet. Störsignale mit höheren Pegeln als denen, die in den spezifischen IEC-Normen angegeben sind, können ein unerwartetes Verhalten des Roboters verursachen. Sehr hohe Signalpegel oder übermäßige Aussetzung können den Roboter dauerhaft beschädigen. EMV-Probleme treten häufig bei Schweißvorgängen auf und werden in der Regel im Protokoll erfasst. Universal Robots kann nicht für Schäden haftbar gemacht werden, die im Zusammenhang mit EMV-Problemen verursacht wurden.
- 2. E/A-Kabel zwischen dem Controller und anderen Maschinen/Geräten dürfen nicht länger als 30 m sein, es sei denn es werden erweiterte Prüfungen durchgeführt.

HINWEIS:

Alle Spannungen und Ströme sind DC (Gleichstrom), sofern nicht anders angegeben.

5.3 Controller-E/A

Dieses Kapitel erklärt, wie Geräte an den E/A im Controller angeschlossen werden. Dieser E/A ist äußerst flexibel und kann für eine Vielzahl von verschiedenen Geräten verwendet werden, wie pneumatische Relais, SPS und Not-Aus-Schaltern.

Die folgende Abbildung zeigt die Anordnung der elektrischen Schnittstelle im Controller.

	Safet	ty .		Remo	te	Po	ver	1	Configu	rable	Inputs	Configu	irable	Outputs	Di	gital lı	nputs	Dig	ital Ou	Itputs			Analo	g
	24V			12V		PW	2		24V		24V	0V		0V	24V		24V	0V		0V			AG	
y Stop	EI0			GND		GN			CI0		CI4	CO0		CO4	DIO		DI4	DO0		DO4		nts	AI0	
genc	24V			ON		24\			24V		24V	0V		0V	24V		24V	0V		0V		- Bol	AG	
Emei	EI1			OFF		0V			CI1		CI5	CO1		CO5	DI1		DI5	DO1		DO5		Ans	AI1	
	24V		-						24V		24V	0V		0V	24V		24V	0V		0V			AG	
Stop	SIO								CI2		CI6	CO2		CO6	DI2		DI6	DO2		DO6		sindi	AO0	
guard	24V								24V		24V	0V		0V	24V		24V	0V		0V	ġ	Ъ б	AG	
Safe	SI1							[CI3		CI7	CO3		CO7	DI3		DI7	DO3		DO7		Anak	AO1	

Die Bedeutung der verschiedenen Farben ist zu beachten, siehe unten.

Gelb mit roter Schrift	Vorgesehen für Sicherheitssignale
Gelb mit schwarzer Schrift	Für die Sicherheit konfigurierbar
Grau mit schwarzer Schrift	Digital-E/A für allgemeine Zwecke
Grün mit schwarzer Schrift	Analog-E/A für allgemeine Zwecke

Der "konfigurierbare" E/A kann in der GUI entweder als sicherheitsrelevanter E/A oder als E/A für allgemeine Zwecke konfiguriert werden. Mehr dazu in Teil II.

Wie Sie einen Digital-E/A verwenden, wird in den folgenden Unterabschnitten beschrieben. Beachten Sie den Abschnitt, der die gemeinsamen Spezifikationen beschreibt.

5.3.1 Gemeinsame Spezifikationen für alle Digital-E/A

Dieser Abschnitt definiert die elektrischen Spezifikationen für den folgenden 24 V Digital-E/A des Controllers.

- Sicherheits-E/A.
- Konfigurierbarer E/A.
- Allgemeiner-E/A.

Es ist zwingend erforderlich, UR Roboter nach den für alle drei Eingangsarten gleichen, elektrischen Spezifikationen zu installieren.

Es ist möglich, den digitalen E/A mit einer internen 24-V-Spannungsversorgung oder mit einer externen Stromversorgung zu betreiben, indem der Klemmenblock "Power" entsprechend konfiguriert wird. Dieser Block besteht aus vier Klemmen. Die oberen beiden (PWR und GND) sind der 24-V- und Erdungsanschluss der internen 24-V-Stromversorgung. Die unteren beiden Klemmen (24 V und 0 V) des Blocks umfassen den 24-V-Eingang der E/A-Versorgung Die Standardkonfiguration ist die interne Spannungsversorgung (siehe unten).

Falls die Stromstärke nicht ausreicht, kann eine externe Spannungsversorgung angeschlossen werden (siehe unten).

Die elektrischen Spezifikationen für eine interne und externe Spannungsversorgung sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Interne 24-V-Spannungsversorgung					
[PWR - GND]	Spannung	23	24	25	V
[PWR - GND]	Strom	0	-	2	А
Externe 24 V Eingangsanforderungen					
[24V { 0V]	Spannung	20	24	29	V
[24V { 0V]	Strom	0	-	6	А

Copyright @2009-2016 by Universal Robots A/S Alle Rechte vorbehalten.

Die digitalen E/As erfüllen IEC 61131-2. Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Digitalausgänge					
[COx / DOx]	Strom	0	-	1	А
[COx / DOx]	Spannungsabfall	0	-	0,5	V
[COx / DOx]	Kriechstrom	0	-	0,1	mA
[COx / DOx]	Funktion	-	PNP	-	Тур
[COx / DOx]	IEC 61131-2	-	1A	-	Тур
Digitaleingänge					
[EIX/SIX/CIX/DIX]	Spannung	-3	-	30	V
[EIX/SIX/CIX/DIX]	OFF-Bereich	-3	-	5	V
[EIx/SIx/CIx/DIx]	ON-Bereich	11	-	30	V
[EIx/SIx/CIx/DIx]	Strom (11 – 30 V)	2	-	15	mA
[EIx/SIx/CIx/DIx]	Funktion	-	PNP	-	Тур
[EIx/SIx/CIx/DIx]	IEC 61131-2	-	3	-	Тур

HINWEIS:

Als "konfigurierbar" wird ein E/A bezeichnet, der entweder als sicherheitsrelevanter oder als normaler E/A konfiguriert werden kann. Es handelt sich dabei um die gelben Klemmen mit schwarzer Schrift.

5.3.2 Sicherheits-E/A

Dieser Abschnitt beschreibt die dedizierten Sicherheitseingänge (gelbe Klemmen mit roter Schrift) und als Sicherheits-E/A konfigurierte, konfigurierbare E/A (gelbe Klemmen mit schwarzer Schrift). Die gemeinsamen Spezifikationen im Abschnitt 5.3.1 sind zu beachten.

Sicherheitsausrüstung und -geräte müssen unter Einhaltung der Sicherheitsanweisungen und der Risikobewertung installiert werden; siehe Kapitel 1.

Alle Sicherheits-E/A sind paarweise angeordnet (redundant) und müssen als zwei separate Zweige beibehalten werden. Eine einzelne Störung darf nicht zum Verlust der Sicherheitsfunktion führen.

Die beiden permanenten Sicherheitseingänge sind für die Notabschaltung und den Schutzstopp vorgesehen. Der Notabschaltungseingang ist nur für Notabschaltungsgeräte. Der Schutzstopp-Eingang gilt für sicherheitsrelevante Schutzausrüstung aller Art. Der funktionelle Unterschied wird im Folgenden erklärt.

UNIVERSAL ROBOTS

	Notabschaltung	Schutzstopp
Roboterbewegung stoppt	Ja	Ja
Programmausführung	Stopt	Pausiert
Roboterstrom	Aus	Ein
Reset	Manuell	Automatisch oder manuell
Einsatzhäufigkeit	Nicht häufig	Jeder Durchlauf bis nicht häufig
Erfordert erneute Initialisierung	Nur Bremsfreigabe	Nein
Stoppkategorie (IEC 60204-1)	1	2
Performance Level der		
Überwachungsfunktion (ISO 13849-1)	PLd	PLd

Es besteht die Möglichkeit, den konfigurierbaren E/A dazu zu verwenden, zusätzliche E/A-Sicherheitsfunktionen wie z. B. einen Notabschaltungsausgang einzurichten. Das Einrichten konfigurierbarer E/A für Sicherheitsfunktionen erfolgt über die GUI, siehe Teil II.

Beispiele zur Verwendung von Sicherheits-E/A finden Sie in den folgenden Abschnitten.

GEFAHR:

- Schließen Sie Sicherheitssignale niemals an eine SPS an, bei der es sich nicht um eine Sicherheits-SPS mit entsprechendem Sicherheitslevel handelt. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da eine der Sicherheitsstoppfunktionen übersteuert werden kann. Sicherheitsschnittstellensignale sind von den normalen E/A-Schnittstellensignalen getrennt zu verlegen.
- 2. Alle sicherheitsrelevanten E/A sind redundant aufgebaut (zwei unabhängige Kanäle). Halten Sie die beiden Kanäle getrennt, damit eine einzelne Störung nicht zum Verlust der Sicherheitsfunktion führen kann.
- Sicherheitsfunktionen müssen vor der Inbetriebnahme des Roboters überprüft werden. Sicherheitsfunktionen müssen regelmäßig geprüft werden.
- 4. Die Roboterinstallation muss diesen Spezifikationen entsprechen. Eine Nichtbeachtung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsstoppfunktion übersteuert werden kann.

5.3.2.1 Standardmäßige Sicherheitskonfiguration

Der Roboter wird mit einer Standardkonfiguration für den Betrieb ohne zusätzliche Sicherheitsausstattung ausgeliefert (siehe Abbildung unten).

Safety 24V 4 EI0 24V 4 EI1 24V 4 EI1 24V 4 24V 4 24V 4 24V 4 24V 4 SI0 SI0 SI0

5.3.2.2 Not-Aus-Schalter anschließen

In den meisten Roboteranwendungen ist die Nutzung einer oder mehrerer zusätzlicher Not-Aus-Schalter erforderlich. Die folgende Abbildung veranschaulicht die Verwendung mehrerer Not-Aus-Schalter.

5.3.2.3 Notabschaltung mit mehreren Maschinen teilen

Bei der Nutzung des Roboters mit anderen Maschinen ist es oftmals erstrebenswert, einen gemeinsamen Notabschaltungs-Stromkreis einzurichten. Der Betreiber muss dann im Ernstfall keine Entscheidung darüber treffen, welche Not-Aus-Schalter zu betätigen sind.

Der normale Notabschaltungseingang kann nicht für die gemeinsame Nutzung verwendet werden, da beide Maschinen darauf warten würden, bis sich die andere nicht mehr im Notabschaltungszustand befindet.

Um die Notabschaltungsfunktion mit anderen Maschinen zu teilen, müssen Sie die folgenden konfigurierbaren E/A-Funktionen über die GUI konfigurieren.

- Konfigurierbares Eingangspaar: Externe Notabschaltung.
- Konfigurierbares Ausgangspaar: System-Notabschaltung.

Die folgende Abbildung zeigt zwei UR Roboter, die sich die Notabschaltungsfunktion teilen. In diesem Beispiel werden die konfigurierten E/A "CIO-CI1" und "COO-CO1" verwendet.

Falls mehr als zwei UR Roboter oder andere Maschinen verbunden werden sollen, ist eine Sicherheits-SPS nötig, um die Notabschaltungssignale zu steuern.

5.3.2.4 Schutzstopp mit automatischer Fortsetzung

Ein Beispiel für ein einfaches Schutzstopp-Gerät ist ein Türschalter, der den Roboter stoppt, wenn die Tür geöffnet wird (siehe Abbildung unten).

Diese Konfiguration trifft nur auf Anwendungen zu, bei denen der Betreiber die Tür nicht passieren und hinter sich schließen kann. Mit dem konfigurierbaren E/A kann vor der Tür eine Reset-Taste eingerichtet werden, um den Roboterbetrieb fortzusetzen.

Ein weiteres Beispiel für eine automatische Fortsetzung ist die Verwendung einer Sicherheitsschaltmatte oder eines Sicherheits-Laser-Scanners, siehe unten.

GEFAHR:

1. Der Roboter setzt den Betrieb automatisch fort, sobald das Schutzstoppsignal wiederhergestellt ist. Verwenden Sie diese Konfiguration nicht, wenn das Signal von der Sicherheitszone aus wiederhergestellt werden kann.

5.3.2.5 Schutzstopp mit Reset-Taste

Wenn die Schutzstopp-Schnittstelle mit einem Lichtvorhang verbunden ist, ist ein Reset von außerhalb der Sicherheitszone erforderlich. Die Reset-Taste benötigt zwei Kanäle. In diesem Beispiel ist der E/A "CIO-CI1" für die Reset-Taste konfiguriert, siehe unten.

5.3.3 Digital-E/A für allgemeine Zwecke

Dieser Abschnitt beschreibt die allgemeinen 24 V E/A (graue Klemmen) und die nicht fest als Sicherheits-E/A konfigurierten aber konfigurierbaren E/A (gelbe Klemmen mit schwarzer Schrift). Die gemeinsamen Spezifikationen im Abschnitt 5.3.1 sind zu beachten.

Die allgemeinen E/A können für die direkte Steuerung von Geräten wie pneumatischen Relais oder für die Kommunikation mit einer SPS verwendet werden. Alle Digitalausgänge können automatisch deaktiviert werden, wenn die Programmausführung gestoppt wird; mehr dazu im Teil II. In diesem Modus ist der Ausgang immer niedrig, wenn ein Programm nicht läuft. Beispiele dafür finden Sie in den folgenden Unterabschnitten. In den Beispielen werden reguläre Digitalausgänge verwendet. Solange er nicht für eine Sicherheitsfunktion konfiguriert werden soll, kann jeder beliebige konfigurierbare Ausgang verwendet werden.

5.3.3.1 Last durch Digitalausgang gesteuert

Diese Abbildung zeigt, wie eine Last anzuschließen ist, die von einem Digitalausgang gesteuert wird, siehe unten.

5.3.4 Digitaleingang durch eine Taste

Die Abbildung unten veranschaulicht den Anschluss einer einfachen Taste an einen Digitaleingang.

5.3.5 Kommunikation mit anderen Maschinen oder einer SPS

Der digitale E/A kann verwendet werden, um mit anderen Geräten zu kommunizieren, sofern ein gemeinsamer GND (0V) besteht und die Maschine PNP-Technologie verwendet, siehe unten.

5.3.6 Analog-E/A für allgemeine Zwecke

Die Analog-E/A-Schnittstelle ist die grüne Klemme. Sie kann verwendet werden, um die Spannung (0 – 10 V) oder den Strom (4 – 20 mA) von und zu anderen Geräten auszugeben oder zu erfassen.

Um höchste Genauigkeit zu erreichen, wird folgendes empfohlen:

- Verwenden Sie die AG-Klemme, die dem E/A am nächsten liegt. Das Paar teilt sich einen gemeinsamen Modus-Filter.
- Verwenden Sie den gleichen GND (0 V) für Geräte und den Controller. Der Analog E/A ist nicht galvanisch vom Controller getrennt.
- Verwenden Sie ein abgeschirmtes Kabel oder verdrillte Doppelkabel. Schließen Sie die Abschirmung an den "GND"-Anschluss der "Power"-Klemme an.
- Die Verwendung von Geräten im Strommodus. Stromsignale sind weniger störanfällig.

Eingangsmodi können in der GUI ausgewählt werden; siehe Teil II. Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Analogeingang im Strommodus					
[AIX - AG]	Strom	4	-	20	mA
[AIX - AG]	Widerstand	-	20	-	Ohm
[AIX - AG]	Auflösung	-	12	-	Bit
Analogeingang im Spannungsmodus					
[AIX - AG]	Spannung	0	-	10	V
[AIX - AG]	Widerstand	-	10	-	kOhm
[AIX - AG]	Auflösung	-	12	-	Bit
Analogausgang im Strommodus					
[AOx - AG]	Strom	4	-	20	mA
[AOx - AG]	Spannung	0	-	10	V
[AOx - AG]	Auflösung	-	12	-	Bit
Analogausgang im Spannungsmodus					
[AOx - AG]	Spannung	0	-	10	V
[AOx - AG]	Strom	-20	-	20	mA
[AOx - AG]	Widerstand	-	1	-	Ohm
[AOx - AG]	Auflösung	-	12	-	Bit

Die folgenden Beispiele veranschaulichen, wie die Analog-E/As verwendet werden.

5.3.6.1 Verwenden eines Analogausgangs

Im Folgenden finden Sie ein Beispiel dafür, wie ein Förderband mit einer analogen Drehzahlsteuereingabe gesteuert werden kann.

5.3.6.2 Verwenden eines Analogeingangs

Im Folgenden finden Sie ein Beispiel dazu, wie man einen analogen Sensor anschließt.

5.3.7 EIN-/AUS-Fernsteuerung

Die EIN-/AUS-Fernsteuerung kann verwendet werden, um den Controller einund ausschalten, ohne das Teach Pendant zu verwenden. Sie wird normalerweise für folgende Anwendungen verwendet:

- Wenn das Teach Pendant nicht zugänglich ist.
- Wenn eine SPS-Anlage die volle Kontrolle hat.
- Wenn mehrere Roboter gleichzeitig ein- oder ausgeschaltet werden müssen.

Die EIN-/AUS-Fernsteuerung bietet eine kleine 12-V-Hilfsstromversorgung, die aktiv bleibt, wenn der Controller ausgeschaltet ist. Die "EIN"- und "AUS"-Eingänge sind nur für kurzzeitige Aktivierung gedacht. Der "EIN-"-Eingang funktioniert genauso wie die Power-Taste. Verwenden Sie für das Ausschalten mit der Fernsteuerung immer den "AUS"-Eingang, da dieses Signal das Speichern von Dateien und das problemlose Herunterfahren des Controllers ermöglicht.

Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
[12V { GND]	Spannung	10	12	13	V
[12V { GND]	Strom	-	-	100	mA
[EIN / AUS]	Inaktive Spannung	0	-	0,5	V
[EIN / AUS]	Aktive Spannung	5	-	12	V
[EIN / AUS]	Eingangsstrom	-	1	-	mA
[EIN]	Aktivierungszeit	200	-	600	ms

Die folgenden Beispiele veranschaulichen, wie die EIN-/AUS-Fernsteuerung funktioniert.

HINWEIS:

Eine spezielle Funktion der Software ermöglicht es, Programme automatisch zu laden und zu starten, siehe Teil II

VORSICHT:

1. Verwenden Sie niemals den "EIN"-Eingang oder die Power-Taste, um den Controller auszuschalten.

5.3.7.1 Remote-Taste "EIN"

Die Abbildung unten zeigt, wie eine Remote-Taste "EIN" angeschlossen wird.

5.3.7.2 Remote-Taste "AUS"

Die Abbildung unten zeigt, wie eine Remote-Taste "AUS" angeschlossen wird.

5.4 Werkzeug-E/A

An der Werkzeugseite des Roboters existiert ein kleiner Stecker mit acht Stiften, siehe Abbildung unten.

Dieser Stecker liefert Leistungs- und Steuerungssignale für Greifer und Sensoren, die mit einem bestimmten Roboterwerkzeug verwendet werden. Die folgenden Industriekabel sind für die Anwendung geeignet:

• Lumberg RKMV 8-354.

Die acht Adern des Kabels haben unterschiedliche Farben. Jede Farbe steht für eine gewisse Funktion, siehe Tabelle unten:

Farbe	Signal
Rot	0 V (GND)
Grau	0 V/+12 V/+24 V (LEISTUNG)
Blau	Digitalausgang 8 (DO8)
Pink	Digitalausgang 9 (DO9)
Gelb	Digitaleingang 8 (DI8)
Grün	Digitaleingang 9 (DI9)
Weiß	Analogeingang 2 (AI2)
Braun	Analogeingang 3 (AI3)

Die interne Spannungsversorgung kann im Tab "E/A" in der GUI auf 0 V, 12 V oder 24 V eingestellt werden, siehe Teil II. Die elektrischen Spezifikationen sind unten angegeben:

Parameter	Min	Тур	Max	Einheit
Versorgungsspannung im 24-V-Modus	-	24	-	V
Versorgungsspannung im 12-V-Modus	-	12	-	V
Versorgungsstrom in beiden Modi	-	-	600	mA

Die folgenden Abschnitte beschreiben die unterschiedlichen E/As des Werkzeugs.

GEFAHR:

- 1. Schließen Sie Werkzeuge und Greifer so an, dass eine Unterbrechung der Stromversorgung nicht zu einer Gefährdung führt, zum Beispiel durch das Herausfallen eines Werkstücks aus dem Werkzeug.
- Verwenden Sie die Option 12 V vorsichtig, da ein Fehler durch den Programmierer einen Spannungswechsel auf 24 V verursachen kann, was zu Schäden an den Geräten und zu einem Brand führen kann.

HINWEIS:

Der Werkzeugflansch wird an die Erdung (GND) angeschlossen (wie die rote Ader).

5.4.1 Digitalausgänge des Werkzeugs

Die digitalen Ausgänge werden als NPN umgesetzt. Wird ein Digitalausgang aktiviert, wird der entsprechende Anschluss auf Masse gelegt. Wird ein Digitalausgang deaktiviert, ist der entsprechende Anschluss offen (open collector/open drain). Die elektrischen Spezifikationen sind unten angegeben:

Parameter	Min	Тур	Max	Einheit
Spannung wenn offen	-0,5	-	26	V
Spannung beim Absinken 1 A	-	0,05	0,20	V
Strom beim Absinken	0	-	600	mA
Strom durch GND	0	-	600	mA

Ein Beispiel für die Verwendung eines Digitalausgangs finden Sie im folgenden Unterabschnitt.

VORSICHT:

1. Die Digitalausgänge im Werkzeug sind nicht strombegrenzt und eine Überschreitung der vorgegebenen Daten kann zu dauerhaften Schäden führen.

5.4.1.1 Verwendung der Digitalausgänge des Werkzeugs

Das untenstehende Beispiel zeigt die Aktivierung eines Verbrauchers mit Hilfe der internen 12-V- oder 24-V-Spannungsversorgung. Bitte bedenken Sie, dass Sie die Ausgangsspannung im Tab "E/A" festlegen müssen. Bitte beachten Sie, dass zwischen dem Anschluss POWER und dem Schirm/der Erdung Spannung anliegt, auch wenn der Verbraucher ausgeschaltet ist.

5.4.2 Digitaleingänge des Werkzeugs

Die Digitaleingänge werden als PNP mit schwachen Pulldown-Widerständen umgesetzt. Dies bedeutet, dass ein potentialfreier Eingang immer einen niedrigen Wert anzeigt. Die elektrischen Spezifikationen sind unten angegeben.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung	-0,5	-	26	V
Logischer Pegel LOW	-	-	2,0	V
Logischer Pegel HIGH	5,5	-	-	V
Eingangswiderstand	-	47k	-	Ω

Ein Beispiel für die Verwendung eines Digitaleingangs finden Sie im folgenden Unterabschnitt.

5.4.2.1 Verwendung der Digitaleingänge des Werkzeugs

Das untenstehende Beispiel zeigt, wie eine einfache Taste angeschlossen wird.

5.4.3 Analogeingänge des Werkzeugs

Die Werkzeug-Analogeingänge sind nicht differenziell und können auf dem Tab "E/A" auf Spannung oder Strom eingestellt werden, siehe Teil II. Die elektrischen Spezifikationen sind unten angegeben.

UNIVERSAL ROBOTS

Parameter	Min	Тур	Max	Einheit
Eingangsspannung im Spannungsmodus	-0,5	-	26	V
Eingangswiderstand im Bereich 0V bis 10V	-	15	-	kΩ
Eingangsspannung im Strommodus	-0,5	-	5,0	V
Eingangsstrom im Strommodus	-2,5	-	25	mA
Eingangswiderstand im Bereich 4mA bis 20mA	-	200	-	Ω

Zwei Beispiele für die Verwendung eines Digitaleingangs finden Sie im folgenden Unterabschnitt.

VORSICHT:

1. Analogeingänge sind im Strommodus nicht gegen Überspannung geschützt. Überschreitung des in den elektrischen Spezifikationen angegebenen Grenzwertes kann zu dauerhaften Schäden am Eingang führen.

5.4.3.1 Verwendung der nicht differenziellen Analogeingänge des Werkzeugs

Das folgende Beispiel veranschaulicht das Anschließen eines analogen Sensors an einen nicht differenziellen Ausgang. Der Ausgang des Sensors kann entweder Strom oder Spannung sein, solange der Eingangsmodus dieses Analogeingangs im Tab "E/A" entsprechend eingestellt ist. Bitte denken Sie daran, zu prüfen, ob der Sensor mit Spannungsausgang den internen Widerstand des Werkzeugs antreiben kann. Andernfalls kann die Messung ungültig sein.

5.4.3.2 Verwendung der differenziellen Analogeingänge des Werkzeugs

Das folgende Beispiel veranschaulicht das Anschließen eines analogen Sensors an einen differenziellen Ausgang. Verbinden Sie den negativen Teil des Ausgangs mit der Erdung (0 V); die Funktionsweise gleicht der eines nicht differenziellen Sensors.

5.5 Ethernet

An der Unterseite des Controllers befindet sich ein Ethernet-Anschluss, siehe Abbildung unten.

Die Ethernet-Schnittstelle kann für folgende Zwecke verwendet werden:

- MODBUS E/A Erweiterungsmodule. Mehr dazu in Teil II.
- Fernzugriff und Fernsteuerung.

Die elektrischen Spezifikationen sind unten angegeben.

Parameter	Min	Тур	Max	Einheit
Kommunikationsgeschwindigkeit	10	-	100	Mb/s

5.6 Netzanschluss

Das Netzkabel am Controller verfügt am Ende über einen standardmäßigen IEC-Stecker. Verbinden Sie den IEC-Stecker mit einem länderspezifischen Netzstecker oder Netzkabel.

Um den Roboter zu aktivieren, muss der Controller an das Stromnetz angeschlossen sein. Dies muss über die IEC C20 Steckdose an der Unterseite des Steuergeräts mit einem entsprechenden IEC C19 Kabel geschehen, siehe Abbildung unten.

Die Spannungsversorgung muss mindestens folgende Parameter aufweisen:

- Verbindung mit Masse.
- Hauptsicherung.
- Fehlerstromeinrichtung.

Es wird empfohlen, als einfaches Mittel zur Trennung und Abschaltung aller in der Roboterapplikation befindlichen Geräte einen Hauptschalter zu installieren.

Die elektrischen Spezifikationen finden Sie in der untenstehenden Tabelle.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung	100	-	240	VAC
Externe Netzsicherung (@ 100-200 V)	8	-	16	А
Externe Netzsicherung (@ 200-240 V)	8	-	16	А
Eingangsfrequenz	47	-	63	Hz
Stand-by-Leistung	-	-	0,5	W
Nennbetriebsleistung	90	150	325	W

GEFAHR:

- 1. Stellen Sie sicher, dass der Roboter korrekt geerdet ist (elektrische Verbindung zur Masse). Verwenden Sie die nicht genutzten Schauben, die zu den Erdungssymbolen im Steuergerät gehören, um eine gemeinsame Erdung aller Geräte im System zu schaffen. Die Nennstromstärke des Masseverbinders sollte nicht unter der höchsten Stromstärke des Systems liegen.
- 2. Stellen Sie sicher, dass der Eingangsstrom des Controllers mit einem Fehlerstromschutzschalter (FI) und einer ordnungsgemäßen Sicherung abgesichert ist.
- 3. Verriegeln Sie alle Stromversorgungen für die abgeschlossene Roboterinformation während des Betriebs und schalten Sie sie ab. Andere Geräte dürfen den Roboter-E/A nicht mit Strom versorgen, wenn das System abgeschaltet ist.
- 4. Stellen Sie sicher, dass alle Kabel korrekt angeschlossen sind, bevor der Controller angeschlossen wird. Verwenden Sie immer ein originales und ordnungsgemäßes Stromkabel.

5.7 Roboteranschluss

Das Kabel des Roboters muss in den Anschluss an der Unterseite des Controllers gesteckt werden, siehe Abbildung unten. Stellen Sie vor dem Einschalten des Roboterarms sicher, dass der Kaltgerätestecker ordnungsgemäß eingerastet ist. Die Kabelverbindung zum Roboter darf erst getrennt werden, nachdem der Roboter ausgeschaltet wurde.

VORSICHT:

- 1. Trennen Sie die Roboterkabelverbindung nicht, solange der Roboterarm eingeschaltet ist.
- 2. Das Originalkabel darf weder verlängert noch verändert werden.

6 Wartung und Reparatur

Es ist sowohl für Wartungs- als auch für Reparaturarbeiten absolut notwendig, dass diese unter Einhaltung aller Sicherheitsanweisungen in diesem Handbuch durchgeführt werden.

Wartungs-, Kalibrierungs- und Reparaturarbeiten müssen gemäß den aktuellsten Versionen der Wartungshandbücher auf der Support-Webseite http://www.universal-robots. com/support durchgeführt werden.

Reparaturen dürfen nur von autorisierten Systemintegratoren oder von Universal Robots durchgeführt werden.

Alle an Universal Robots zurückgesandten Teile sind gemäß Wartungshandbuch zurückzusenden.

6.1 Sicherheitsanweisungen

Nach Wartungs- und Reparaturarbeiten müssen Prüfungen durchgeführt werden, um den erforderlichen Sicherheitslevel zu gewährleisten. Die gültigen nationalen oder regionalen Arbeitsschutzbestimmungen sind für diese Prüfung zu beachten. Die korrekte Funktionsweise aller Sicherheitsfunktionen ist ebenfalls zu prüfen.

Der Zweck von Wartungs- und Reparaturarbeiten ist es, sicherzustellen, dass das System betriebsfähig bleibt oder, im Falle einer Störung, das System erneut in einen betriebsfähigen Zustand zu versetzen. Reparaturarbeiten umfassen die Fehlerbehebung und die eigentliche Reparatur selbst.

Die folgenden Sicherheitsmaßnahmen und Warnungen müssen durchgeführt bzw. eingehalten werden, wenn Arbeiten am Roboterarm oder dem Steuergerät vorgenommen werden.

GEFAHR:

- 1. Nehmen Sie keine Änderungen an der Sicherheitskonfiguration der Software vor (z. B. die Kraftgrenze). Die Sicherheitskonfiguration wird im PolyScope-Handbuch beschrieben. Werden Sicherheitsparameter verändert, sollte das komplette Robotersystem neu betrachtet werden, d. h. der gesamte Sicherheitsgenehmigungsprozess, einschließlich Risikobewertung, sollte entsprechend aktualisiert werden.
- 2. Tauschen Sie defekte Komponenten mit neuen Komponenten mit denselben Artikelnummern oder gleichwertigen Komponenten aus, die zu diesem Zweck von Universal Robots genehmigt wurden.
- 3. Reaktivieren Sie alle deaktivierten Sicherheitsmaßnahmen unverzüglich nach Abschluss der Arbeit.
- 4. Dokumentieren Sie alle Reparaturen und speichern Sie diese Dokumentation in der technischen Datei für das komplette Robotersystem.

GEFAHR:

- 1. Trennen Sie das Netzkabel von der Unterseite des Controllers, um sicherzustellen, dass er vollständig ausgeschaltet ist. Schalten Sie jede andere Energiequelle ab, die an den Roboterarm oder den Controller angeschlossen ist. Ergreifen Sie die nötigen Vorkehrungen, um zu vermeiden, dass andere Personen das System während der Reparaturphase einschalten.
- 2. Prüfen Sie den Erdungsanschluss bevor Sie das System wieder einschalten.
- 3. Beachten Sie ESD-Vorschriften, wenn Teile des Roboterarms oder des Controllers demontiert werden.
- Vermeiden Sie die Demontage der Stromversorgungen im Controller. In den Stromversorgungen können hohe Spannungen (bis zu 600 V) noch mehrere Stunden nach dem Ausschalten des Controllers vorliegen.
- 5. Vermeiden Sie das Eindringen von Wasser oder Verunreinigungen in den Roboterarm oder den Controller.

Roboter von UR müssen im Einklang mit den geltenden nationalen Gesetzen, Regulierungen und Standards entsorgt werden.

Roboter von UR werden zum Schutze der Umwelt unter beschränkter Verwendung gefährlicher Stoffe hergestellt, wie in der europäischen RoHS-Richtlinie 2011/65/EU definiert. Zu diesen Stoffen zählen Quecksilber, Cadmium, Blei, Chrom VI, polybromierte Biphenyle und polybromierte Diphenylether.

Gebühren für die Entsorgung von und den Umgang mit Elektroabfall aus UR Robotern, die auf dem dänischen Markt verkauft werden, werden von Universal Robots A/S vorab an das DPA-System entrichtet. Importeure in Ländern, die der europäischen WEEE-Richtlinie 2012/19/EU unterliegen, haben selbst für ihre Registrierung beim nationalen WEEE-Register ihres Landes zu sorgen. Die Gebühr beträgt in der Regel weniger als 1 €/Roboter. Eine Liste der nationalen Register finden Sie hier: https://www.ewrn.org/national-registers.

Die folgenden Symbole sind am Roboter angebracht, um die Konformität mit den obenstehenden Rechtsvorschriften anzuzeigen:

Dieses Kapitel enthält eine Sammlung verschiedener Zertifizierungen und Erklärungen, die für das Produkt vorbereitet wurden.

8.1 Zertifizierungen von Drittparteien

Zertifizierungen von Drittparteien sind freiwillig. Um jedoch Roboterintegratoren den besten Service zu bieten, hat UR sich entschieden, seine Roboter durch die folgenden, anerkannten Prüfinstitute zertifizieren zu lassen.

Roboter von UR sind durch den TÜV NORD, einer nach der Maschinenrichtlinie 2006/42/EG benannten Stelle in der EU, sicherheitsgeprüft. Eine Kopie des Sicherheitszertifikats des TÜV NORD befindet sich im Anhang B.

Roboter von UR sind von DELTA auf Sicherheit und Leistung getestet. Ein Zertifikat über die elektromagnetische Verträglichkeit (EMV) befindet sich im Anhang B. Ein Umweltprüfzertifikat befindet sich im Anhang B.

8.2 Erklärungen im Einklang mit EU-Richtlinien

TÜV NORD

DELTA

EU-Erklärungen sind primär für europäische Länder relevant. Sie werden jedoch auch von manchen Ländern außerhalb Europas anerkannt oder sogar gefordert. Europäische Richtlinien sind verfügbar von der offiziellen Homepage: http://eur-lex.europa.eu.

Roboter von UR sind im Einklang mit den nachstehend aufgelisteten Richtlinien zertifiziert.

2006/42/EG — Maschinenrichtlinie

Roboter von UR sind gemäß der Maschinenrichtlinie 2006/42/EG unvollständige Maschinen. Beachten Sie, dass gemäß dieser Richtlinie keine CE-Kennzeichnung an unvollständigen Maschinen angebracht ist. Wenn der UR Roboter in einer Pestizidanwendung eingesetzt wird, beachten Sie die bestehende Richtlinie 2009/127/EG. Die Einbauerklärung gemäß 2006/42/EG Anhang II 1.B. ist in Anhang B angegeben.

2006/95/EC — Niederspannungsrichtlinie

- 2004/108/EC Richtlinie über die elektromagnetische Verträglichkeit (EMV)
- 2011/65/EU Beschränkung der Verwendung bestimmter gefährlicher Stoffe (RoHS 2)

2012/19/EU — Elektro- und Elektronikgeräte-Abfall (WEEE)

Erklärungen über die Konformität mit den vorstehenden Richtlinien sind in der Einbauerklärung in Anhang B inbegriffen.

Eine CE-Kennzeichnung ist gemäß den CE-Kennzeichnungsrichtlinien oben angebracht. Für Elektro- und Elektronikgeräte-Abfall, siehe Kapitel 7.

Informationen zu den bei der Entwicklung des Roboters angewandten Standards finden Sie im Anhang C.

9.1 Produktgewährleistung

Unbeschadet jeglicher Ansprüche, die der Benutzer (Kunde) gegenüber dem Vertriebshändler oder Einzelhändler geltend machen kann, wird dem Kunden eine Herstellergewährleistung entsprechend den unten stehenden Bedingungen gewährt:

Wenn neue Geräte und deren Komponenten innerhalb von 12 Monaten (maximal 15 Monate ab Versand) nach Inbetriebnahme Mängel aufgrund von Herstellungsund/oder Materialfehlern aufweisen, stellt Universal Robots die erforderlichen Ersatzteile bereit, während der Benutzer (Kunde) die Arbeitsstunden für den Austausch der Ersatzteile bereitstellt, wobei Universal Robots das Bauteil entweder durch ein anderes Bauteil austauscht, das dem aktuellen Stand der Technik entspricht, oder repariert. Diese Gewährleistung verliert ihre Gültigkeit, wenn der Gerätedefekt auf eine unsachgemäße Behandlung und/oder die fehlende Einhaltung der Informationen in den Benutzerhandbüchern zurückzuführen ist. Diese Gewährleistung gilt nicht für und erstreckt sich nicht auf Leistungen, die durch den befugten Vertriebshändler oder den Kunden selbst durchgeführt werden (z. B. Aufbau, Konfiguration, Herunterladen von Software). Der Kaufbeleg, aus dem das Kaufdatum hervorgeht, ist als Nachweis für die Gewährleistung erforderlich. Ansprüche im Rahmen der Gewährleistung sind innerhalb von zwei Monaten einzureichen, nachdem der Gewährleistungsmangel aufgetreten ist. Das Eigentumsrecht an Geräten oder Komponenten, die durch Universal Robots ausgetauscht und an Universal Robots zurückgeschickt wurden, geht auf Universal Robots über. Diese Gewährleistung deckt jegliche anderen Ansprüche nicht ab, die durch das oder im Zusammenhang mit dem Gerät entstehen. Nichts in dieser Gewährleistung soll dazu führen, die gesetzlich festgeschriebenen Rechte des Kunden und die Herstellerhaftung für Tod oder Personenschaden durch die Verletzung der Sorgfaltspflicht zu begrenzen oder auszuschließen. Der Gewährleistungszeitraum wird nicht durch Leistungen verlängert, die gemäß den Bestimmungen der Gewährleistung erbracht werden. Sofern kein Gewährleistungsmangel besteht, behält sich Universal Robots das Recht vor, dem Kunden die Austausch- und Reparaturarbeiten in Rechnung zu stellen. Die oben stehenden Bestimmungen implizieren keine Änderungen hinsichtlich der Nachweispflicht zu Lasten des Kunden. Für den Fall, dass ein Gerät Mängel aufweist, haftet Universal Robots nicht für indirekte, zufällige, besondere oder Folgeschäden einschließlich - aber nicht beschränkt auf - Einkommensverluste, Nutzungsausfälle, Produktionsausfälle oder Beschädigungen an anderen Produktionsmaschinen.

Wenn ein Gerät Mängel aufweist, kommt Universal Robots nicht für Folgeschäden oder Verluste auf, wie zum Beispiel Produktionsausfall oder Beschädigungen an anderen Produktionsgeräten.

9.2 Haftungsausschluss

Universal Robots arbeitet weiter an der Verbesserung der Zuverlässigkeit und dem Leistungsvermögen seiner Produkte und behält sich daher das Recht vor, das Produkt ohne vorherige Ankündigung zu aktualisieren. Universal Robots unternimmt alle Anstrengungen, dass der Inhalt dieser Anleitung genau und korrekt ist, übernimmt jedoch keine Verantwortung für jedwede Fehler oder fehlende Informationen. Informationen über die Nachlaufzeiten und -strecken sind für Stopps der KATE-GORIE 0 und KATEGORIE 1 verfügbar¹. Dieser Anhang enthält Informationen über Stopps der Kategorie 0. Informationen über Stopps der Kategorie 1 finden Sie unter http://universal-robots.com/support/.

A.1 Stopp-Kategorie 0 Nachlaufzeiten und -strecken

Die folgende Tabelle enthält die geltenden Nachlaufzeiten und -strecken, nachdem ein Stopp der KATEGORIE 0 ausgelöst wurde. Diese Messungen entsprechen der folgenden Konfiguration des Roboters:

- Streckung: 100% (der Roboterarm ist horizontal voll ausgestreckt).
- Geschwindigkeit: 100% (die allgemeine Geschwindigkeit des Roboters ist auf 100% festgelegt und die Gelenke bewegen sich mit einer Geschwindigkeit von 183 °/s).
- Nutzlast: maximale am TCP befestigte Nutzlast, die vom Roboter bewegt wird (5 kg).

Der Test an Gelenk 0 wurde bei einer Horizontalbewegung durchgeführt, d. h. die Drehachse stand senkrecht zum Boden. Während der Tests der Gelenke 1 und 2 bewegte sich der Roboter auf einer vertikalen Bahn; d. h. die Drehachsen waren parallel zum Boden angeordnet. Der Stopp wurde durchgeführt, während der Roboter sich abwärts bewegte.

	Nachlaufstrecke (rad)	Nachlaufzeit (ms)
Gelenk 0 (FUSS)	0.31	244
Gelenk 1 (SCHULTER)	0.70	530
Gelenk 2 (ELLBOGEN)	0.22	164

¹Gemäß IEC 60204-1, siehe Glossar für weitere Details.

B.1 CE/EU Declaration of Incorporation (original)

According to European Directive 2006/42/EC annex II 1.B.

The manufacturer Universal Robots A/S Energivej 25 5260 Odense S Denmark

hereby declares that the product described below

Industrial robot UR5/CB3 Serial number

may not be put into service before the machinery in which it will be incorporated is declared in conformity with the provisions of Directive 2006/42/EC, as amended by Directive 2009/127/EC, and with the regulations transposing it into national law.

The safety features of the product are prepared for compliance with all essential requirements of Directive 2006/42/EC under the correct incorporation conditions, see product manual. Compliance with all essential requirements of Directive 2006/42/EC relies on the specific robot installation and the final risk assessment.

Relevant technical documentation is compiled according to Directive 2006/42/EC annex VII part B and available in electronic form to national authorities upon legitimate request. Undersigned is based on the manufacturer address and authorised to compile this documentation.

Additionally the product declares in conformity with the following directives, according to which the product is CE marked:

2014/35/EU — Low Voltage Directive (LVD) 2014/30/EU — Electromagnetic Compatibility Directive (EMC) 2011/65/EU — Restriction of the use of certain hazardous substances (RoHS)

A complete list of applied harmonized standards, including associated specifications, is provided in the product manual. This list is valid for the product manual with the same serial numbers as this document and the product.

Odense, April 20th, 2016

aux Brandt R&D

David Brandt Technology Officer

B.2 CE/EU-Herstellererklärung (Übersetzung des Originals)

Gemäß der europäischen Richtlinie 2006/42/EG Anhang II 1.B.

Der Hersteller Universal Robots A/S Energivej 25 5260 Odense S Dänemark

erklärt hiermit, dass das nachstehend beschriebene Produkt

Industrieroboter UR5 Seriennummer (siehe Original)

nicht in Betrieb zu nehmen ist, bevor die die Konformität mit den Bestimmungen der Richtlinie 2006/42/EG und der geänderten Fassung 2009/127/EG - sowie mit den Bestimmungen zur Umsetzung in nationales Recht - für die maschinelle Anlage, in die es eingebunden wird, erklärt wurde.

Die Sicherheitsmerkmale des Produkts sind für die Einhaltung aller wesentlichen Anforderungen der Richtlinie 2006/42/EG unter den korrekten Einbaubedingungen vorbereitet. Siehe Produkthandbuch. Die Einhaltung aller wesentlichen Anforderungen der Richtlinie 2006/42/EG beruht auf der spezifischen Roboterinstallation und der abschließenden Risikobewertung.

Alle diesbezüglichen, technischen Unterlagen wurden gemäß der Richtlinie 2006/42/EG Anhang VII Teil B in elektronischer Form erstellt und werden den nationalen Behörden auf Verlangen ausgehändigt. Der Unterzeichner ist an der Anschrift des Herstellers ansässig und zur Zusammenstellung dieser Dokumentation berechtigt.

Zusätzlich wird für das Produkt die Konformität mit den folgenden Richtlinien erklärt, gemäß denen das Produkt eine CE-Kennzeichnung ausweist:

2014/35/EU — Niederspannungsrichtlinie 2014/30/EU — Richtlinie über die elektromagnetische Verträglichkeit (EMV) 2011/65/EU — Beschränkung der Verwendung bestimmter gefährlicher Stoffe (RoHS)

Eine vollständige Liste angewandter harmonisierter Normen, einschließlich zugehöriger Spezifikationen, befindet sich im Produkthandbuch. Diese Liste ist gültig für das Produkthandbuch mit derselben Seriennummer wie dieses Dokument und das Produkt.

Odense, 20. April 2016

. A Broundt R&C

David Brandt Technology Officer
B.3 Sicherheitszertifikat

QELTA

B.4 Umweltverträglichkeitszertifikat

Climatic and mechanical assessment sheet no. 1275

DELTA client Universal Robots A/S Energivej 25 5260 Odense S Denmark	DELTA project no. T207415-1
Product identification UR5 robot arm: UR5 AE/CB3, 0A-series UR5 control box: AE/CB3, 0A-series UR5 teach pendant: AE/CB3, 0A-series UR10 robot arm: UR10 AE/CB3, 0A-series UR10 control box: UR10 AE/CB3, 0A-series UR10 teach pendant: AE/CB3, 0A-series DELTA report(s) DELTA project no. T207415-1, DANAK-19/13752 Revis	sion 1
Other document(s)	
Conclusion The two robot arms UR5 and UR10 including their contro- below listed standards. The test results are given in the D specified and the test criteria for environmental tests as sp IEC 60068-2-1, Test Ae; -5 °C, 16 h IEC 60068-2-2, Test Be; +50 °C, 16 h IEC 60068-2-64, Test Fh; 5 – 20 Hz: 0.05 g ² /Hz, 20 – 150 IEC 60068-2-27, Test Ea, Shock; 160 g, 1 ms, 3 x 6 shock	ol box and teach pendant have been tested according to the ELTA report listed above. The tests were carried out as pecified in Annex 1 of the report were fulfilled. 0 Hz: -3 dB/octave, 1.66 grms, 3 x 1½ h ks
Date Hørsholm, 14 March 2014	Assessor Susanne Otto B.Sc.E.E., B.Com (Org)
	20acc short

UNIVERSAL ROBOTS

B.5 EMV-Prüfung

Attestation of Conformity

EMC assessment - Certificate no. 1351

From 29 June 2007 DELTA has been designated as Notified Body by the notified authority National Telecom Agency in Denmark to carry out tasks referred to in Annex III of the European Council EMC Directive 2004/108/EC. The attestation of conformity is in accordance with Article 5 and refers to the essential requirements set out in Annex I.

DELTA client

Universal Robots A/S Energivej 25 5260 Odense S Denmark

Product identification UR robot generation 3, G3, including CB3/AE for models UR3, UR5 and UR10

Manufacturer Universal Robots A/S

Technical report(s)

DELTA Project T207371, EMC Test of UR5 and UR10 - DANAK-19/13884, dated 26 March 2014 DELTA Project T209172, EMC Test of UR3 - DANAK-19/14667, dated 05 November 2014 UR EMC Test Specification G3 rev 3, dated 30 October 2014 EMC Assessment Sheet 1351dpa

Standards/Normative documents

EMC Directive 2004/108/EC, Article 5 EN/(IEC) 61326-3-1:2008, Industrial locations, SIL 2 applications EN/(IEC) 61000-6-2:2005 EN/(IEC) 61000-6-4:2007+A1

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same EMC quality. The attestation does not contain any statements pertaining to the EMC protection requirements pursuant to other laws and/or directives other than the above mentioned if any.

DELTA Venlighedsvej 4 2970 Hørsholm Denmark

Tel. +45 72 19 40 00 Fax +45 72 19 40 01 www.delta.dk VAT No. 12275110

Hørsholm, 20 November 2014

a hol S

Jakob Steensen Principal Consultant

20aocass-uk-j

Dieser Abschnitt beschreibt die bei der Entwicklung des Roboterarms und des Steuergeräts angewandten Normen. Eine in Klammern stehende EU-Richtlinienbezeichnung bedeutet, dass der Standard mit dieser Richtlinie zusammenwirkt.

Ein Standard ist kein Gesetz. Ein Standard ist ein von bestimmten Mitgliedern einer Branche verfasstes Dokument, das Definitionen normaler Sicherheits- und Leistungsanforderungen für ein Produkt oder eine Produktgruppe enthält.

Bedeutung der Abkürzungen:

ISO	International Standardization Organization
IEC	International Electrotechnical Commission
EN	European Norm
TS	Technical Specification
TR	Technical Report
ANSI	American National Standards Institute
RIA	Robotic Industries Association
CSA	Canadian Standards Association

Die Konformität mit den folgenden Standards ist nur dann gewährleistet, wenn die Montageanweisungen, die Sicherheitsanweisungen und andere Anleitungen in diesem Handbuch befolgt werden.

ISO 13849-1:2006 [PLd] ISO 13849-1:2015 [PLd] ISO 13849-2:2012 EN ISO 13849-1:2008 (E) [PLd – 2006/42/EG] EN ISO 13849-2:2012 (E) (2006/42/EG)

Safety of machinery – Safety-related parts of control systems

Part 1: General principles for design

Part 2: Validation

Die Sicherheitssteuerung ist entsprechend den Anforderungen der Standards als Performance- Level D (PLd) ausgelegt.

ISO 13850:2006 [Stopp-Kategorie 1] ISO 13850:2015 [Stopp-Kategorie 1] EN ISO 13850:2008 (E) [Stopp-Kategorie 1 – 2006/42/EG] EN ISO 13850:2015 [Stopp-Kategorie 1 – 2006/42/EG]

Safety of machinery – Emergency stop – Principles for design

Die Notabschaltungsfunktion ist nach diesem Standard als Stopp-Kategorie 1 ausgelegt. Stopp-Kategorie 1 beschreibt einen kontrollierten Stopp, bei dem die Motoren unter Stromzufuhr gestoppt werden und die Stromversorgung getrennt wird, nachdem der Stopp ausgeführt wurde.

ISO 12100:2010 EN ISO 12100:2010 (E) [2006/42/EG]

Safety of machinery – General principles for design – Risk assessment and risk reduction

UR Roboter werden nach den Prinzipien dieses Standards beurteilt.

ISO 10218-1:2011 EN ISO 10218-1:2011(E) [2006/42/EG]

Robots and robotic devices – Safety requirements for industrial robots

Part 1: Robots

Dieser Standard ist für den Roboterhersteller und nicht den Integrator gedacht. Der zweite Teil (ISO 10218-2) ist für den Roboter-Integrator bestimmt, da er sich mit der Installation und dem Design der Roboter-Anwendung befasst.

Die Autoren des Standards beziehen sich auf herkömmliche Industrieroboter, bei denen der Mensch normalerweise durch Zäune und Lichtgitter geschützt wird. UR Roboter verfügen über ständig aktive Kraft- und Leistungsbegrenzungen. Daher werden im Folgenden einige Begriffe erläutert.

Falls ein UR Roboter in einer nicht sicheren Applikation verwendet wird, sind unter Umständen zusätzliche Sicherheitsmaßnahmen erforderlich; siehe Kapitel 1 dieses Handbuchs.

Klarstellung:

- "3.24.3 Gesicherter Bereich" ist durch die Sicherung des Bereichs definiert. Typischerweise befindet sich der gesicherte Bereich hinter einer Absperrung, die Menschen vor gefährlichen, herkömmlichen Robotern schützt. UR Roboter sind so ausgelegt, dass sie mit ihren leistungs- und kraftbegrenzenden, kollaborativen Sicherheitsfunktionen auch ohne Absperrung verwendet werden können und benötigen keinen durch eine Absperrung abgetrennten, gesicherten Gefahrenbereich.
- "5.4.2 Leistungsanforderung". Alle Sicherheitsfunktionen sind nach ISO 13849-1:2006 als PLd ausgelegt. Der Roboter verfügt in jedem Gelenk über redundante Encoder-Systeme und die sicherheitsrelevanten E/As sind mit einer Struktur der Kategorie¹ 3 ausgelegt. Die sicherheitsrelevanten E/As müssen gemäß dieser Anleitung an Anlagen der Kategorie 3 angeschlossen werden, um eine PLD-Struktur der Kategorie 3 der gesamten Sicherheitsfunktion zu bilden.
- "5.7 Betriebsmodi". UR Roboter haben keine unterschiedlichen Betriebsmodi und haben daher auch keinen Betriebsart-Wählschalter.
- "5.8 Pendant-Steuerung". Dieser Abschnitt definiert Schutzfunktionen des Teach Pendant für die Verwendung in einem gesicherten Gefahrenbereich. Da UR Roboter für den kollaborativen Betrieb entwickelt wurden, ist kein gesicherter Gefahrenbereich wie bei herkömmlichen Robotern erforderlich. Die Teach-Funktion ist bei UR Robotern sicherer als bei herkömmlichen Robotern. Anstatt einen Drei-Punkt-Schalter betätigen zu müssen, kann der Bediener den Roboter ganz einfach mit der Hand stoppen. Wird ein UR-Roboter in einem gefährdeten, abgesicherten Bereich installiert, ist

¹Gemäß ISO 13849-1. Weitere Einzelheiten finden Sie über das Glossar

die Anbindung an einen Drei-Punkt-Schalter als zusätzliche Schutzmaßnahme wie in der Anleitung beschrieben möglich. Beachten Sie auch die Aussage in ISO/TS 15066 Abschnitt 5.4.5.

- "5.10 Anforderungen für den kollaborativen Betrieb". Die leistungs- und kraftbegrenzenden, kollaborativen Sicherheitsfunktionen der UR Roboter sind stets aktiv. Das visuelle Design der UR Roboter unterstreicht deren Fähigkeit zum kollaborativen Betrieb. Die leistungs- und kraftbegrenzenden Sicherheitsfunktionen wurden in Übereinstimmung mit ISO 10218-1 Abschnitt 5.10.5 entwickelt. Beachten Sie auch die Aussage in ISO/TS 15066 Abschnitt 5.5.4.
- "5.12.3 Sicherheitsrelevante weiche Achsen- und Raumbegrenzung". Diese Funktion ist eine von mehreren Sicherheitsfunktionen, die über die Software konfigurierbar sind. Ein Hash-Code wird aus den Einstellungen all dieser Sicherheitsfunktionen erzeugt und als Sicherheitsprüfungskennung in der grafischen Benutzeroberfläche dargestellt.

ISO/TS 15066:2016

Robots and robotic devices – Safety requirements for industrial robots – Collaborative operation

Dies ist eine Technische Spezifikation (TS) und **keine** Norm. Der Zweck einer TS ist es, neue Anforderungen vorzustellen, um Ihre Anwendbarkeit auf eine Branche zu prüfen. Per Definition ist eine TS nicht genug ausgereift, um sie im Rahmen der europäischen Richtlinien zu harmonisieren.

Diese TS ist sowohl für Hersteller als auch Integratoren von Robotersystemen gedacht. UR-Roboter entsprechen den Teilanforderungen, die für den reinen Roboter relevant sind, so dass es dem Integrator freisteht, die TS bei der Integration des Roboters zu verwenden.

Diese TS zeigt freiwillige Anforderungen und Leitlinien auf, welche die ISO 10218-Normen auf dem Gebiet von kollaborativen Robotern ergänzen. Neben dem Haupttext enthält die TS einen Anhang A mit einer Tabelle, welche Vorschläge für Kraft und Druckgrenzen aufzeigt, die sich an Schmerzgrenzen und **nicht** Verletzungen orientieren. Es ist wichtig, die Hinweise unterhalb der Tabelle zu lesen und zu verstehen, da viele der Grenzwerte nur auf konservativen Schätzungen und Literaturstudien beruhen. Alle Angaben können sich in der Zukunft ändern, sobald neue Ergebnisse aus der wissenschaftlichen Forschung verfügbar sind. Der Anhang A ist ein informeller und freiwilliger Teil der TS. Eine Konformität mit der TS liegt daher auch ohne die Verwendung der in Anhang A aufgeführten Grenzwerte vor.

ANSI/RIA R15.06-2012

Industrial Robots and Robot Systems – Safety Requirements

Dieser amerikanische Standard umfasst die ISO-Normen ISO 10218-1 (siehe oben) und ISO 10218-2 in einem Dokument. Das britische Englisch des Originals wurde in amerikanisches Englisch umgeändert, der Inhalt bleibt jedoch gleich.

Beachten Sie, dass der zweite Teil (ISO 10218-2) dieser Norm auf den Integrator des Robotersystems und daher nicht auf Universal Robots zutrifft.

CAN/CSA-Z434-14

Industrial Robots and Robot Systems – General Safety Requirements

Dieser kanadische Standard umfasst die ISO-Normen ISO 10218-1 (siehe oben) und -2 in einem Dokument. CSA hat zusätzliche Anforderungen an den Benutzer des Robotersystems hinzugefügt. Einige dieser Anforderungen müssen möglicherweise vom Roboter-Integrator beachtet werden.

Beachten Sie, dass der zweite Teil (ISO 10218-2) dieser Norm auf den Integrator des Robotersystems und daher nicht auf Universal Robots zutrifft.

IEC 61000-6-2:2005 IEC 61000-6-4/A1:2010 EN 61000-6-2:2005 [2004/108/EG] EN 61000-6-4/A1:2011 [2004/108/EG]

Electromagnetic compatibility (EMC)

Part 6-2: Generic standards - Immunity for industrial environments

Part 6-4: Generic standards - Emission standard for industrial environments

Diese Standards definieren Anforderungen in Bezug auf elektrische und elektromagnetische Störungen. Die Konformität mit diesen Standards gewährleistet, dass UR Roboter in Industrieumgebungen gut funktionieren und dass sie keine anderen Geräte stören.

IEC 61326-3-1:2008 EN 61326-3-1:2008

Electrical equipment for measurement, control and laboratory use - EMC requirements

Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) - General industrial applications

Dieser Standard definiert erweiterte EMV-Störfestigkeitsanforderungen für sicherheitsbezogene Funktionen. Die Konformität mit dieser Norm gewährleistet, dass die Sicherheitsfunktionen der UR-Roboter auch dann sicher arbeiten, wenn andere Geräte die in den IEC 61000 Normen definierten EMV-Grenzwerte überschreiten.

IEC 61131-2:2007 (E) EN 61131-2:2007 [2004/108/EG]

Programmable controllers

Part 2: Equipment requirements and tests

Sowohl normale als auch sicherheitsrelevante 24 V E/As wurden gem. den Anforderungen dieser Norm entwickelt und konstruiert, um eine sichere Kommunikation mit anderen SPS-Systemen zu gewährleisten.

ISO 14118:2000 (E) EN 1037/A1:2008 [2006/42/EG]

Safety of machinery – Prevention of unexpected start-up

Diese beiden Standards sind sich sehr ähnlich. Sie definieren Sicherheitsprinzipien zur Vermeidung eines unerwarteten Anlaufs als Folge einer unbeabsichtigten Wiederherstellung der Stromversorgung während der Wartung oder Reparatur oder aufgrund von unbeabsichtigten Anlaufbefehlen von Seiten der Steuerung.

IEC 60947-5-5/A1:2005 EN 60947-5-5/A11:2013 [2006/42/EG]

Low-voltage switchgear and controlgear

Part 5-5: Control circuit devices and switching elements - Electrical emergency stop device with mechanical latching function

Die direkte Kontaktunterbrechung und der Sicherheitsverriegelungsmechanismus des Not-Aus-Schalters entsprechen den Anforderungen dieses Standards.

IEC 60529:2013 EN 60529/A2:2013

Degrees of protection provided by enclosures (IP Code)

Diese Norm legt Schutzarten hinsichtlich des Schutzes gegen Staub und Wasser fest. UR Roboter werden laut dieser Norm entwickelt und erhalten einen IP-Code (siehe Aufkleber auf dem Roboter).

IEC 60320-1/A1:2007 IEC 60320-1:2015 EN 60320-1/A1:2007 [2006/95/EG] EN 60320-1:2015

Appliance couplers for household and similar general purposes

Part 1: General requirements

Das Netzkabel erfüllt diese Norm.

ISO 9409-1:2004 [Typ 50-4-M6]

Manipulating industrial robots – Mechanical interfaces

Part 1: Plates

Die Werkzeugflansche der UR Roboter entsprechen Typ 50-4-M6 dieses Standards. Roboterwerkzeuge sollten ebenfalls laut diesem Standard konstruiert sein, um eine ordnungsgemäße Passform zu gewährleisten.

ISO 13732-1:2006 EN ISO 13732-1:2008 [2006/42/EG]

Ergonomics of the thermal environment – Methods for the assessment of human responses to contact with surfaces

Part 1: Hot surfaces

Die UR Roboter sind so ausgelegt, dass ihre Oberflächentemperaturen stets unter dem in diesem Standard definierten, ergonomischen Grenzwert bleiben.

IEC 61140/A1:2004 EN 61140/A1:2006 [2006/95/EG]

Protection against electric shock – Common aspects for installation and equipment

UNIVERSAL ROBOTS

UR Roboter werden gemäß diesem Standard konstruiert, um vor Stromschlägen zu schützen. Ein Erdungs-/Masseanschluss ist nach Hardware-Installationshandbuch zwingend erforderlich.

IEC 60068-2-1:2007 IEC 60068-2-2:2007 IEC 60068-2-27:2008 IEC 60068-2-64:2008 EN 60068-2-1:2007 EN 60068-2-2:2007 EN 60068-2-27:2009 EN 60068-2-64:2008

Environmental testing

Part 2-1: Tests - Test A: Cold

Part 2-2: Tests - Test B: Dry heat

Part 2-27: Tests - Test Ea and guidance: Shock

Part 2-64: Tests - Test Fh: Vibration, broadband random and guidance

UR Roboter werden nach den in diesen Normen definierten Testmethoden geprüft.

IEC 61784-3:2010 EN 61784-3:2010 [SIL 2]

Industrial communication networks - Profiles

Part 3: Functional safety fieldbuses – General rules and profile definitions

Diese Standards legen Anforderungen an sicherheitsbewertete Kommunikationsbusse fest.

IEC 60204-1/A1:2008 EN 60204-1/A1:2009 [2006/42/EG]

Safety of machinery – Electrical equipment of machines

Part 1: General requirements

Die allgemeinen Grundlagen dieser Norm sind erfüllt.

IEC 60664-1:2007 IEC 60664-5:2007 EN 60664-1:2007 [2006/95/EG] EN 60664-5:2007

Insulation coordination for equipment within low-voltage systems

Part 1: Principles, requirements and tests

Part 5: Comprehensive method for determining clearances and creepage distances equal to or less than 2 mm

Die elektrischen Schaltkreise der UR Roboter erfüllen diese Norm.

EUROMAP 67:2015, V1.11

Electrical Interface between Injection Molding Machine and Handling Device / Robot

UR Roboter, die mit dem E67 Zusatzmodul zur Verwendung mit Spritzgießmaschinen ausgestattet sind, entsprechen dieser Norm.

D Technische Spezifikationen

Robotertyp	UR5
Gewicht	18.4 kg / 40.6 lb
Max. Nutzlast	5 kg / 11 lb
(s. Abschnitt 4.4)	
Reichweite	850 mm / 33.5 in
Gelenkreichweite	\pm 360 $^{\circ}$ für alle Gelenke
Geschwindigkeit	Gelenke: Max 180 °/s.
	Werkzeug: Ca. 1 m/s/ Ca. 39.4 in/s.
Wiederholgenauigkeit	\pm 0.1 mm $/$ \pm 0.0039 in (4 mils)
Grundfläche	Ø149 mm / 5.9 in
Freiheitsgrade	6 Drehgelenke
Abmessungen Controller (W \times	475 mm \times 423 mm \times 268 mm / 18.7 in \times 16.7 in \times 10.6 in
$H \times D$)	
Controller E/A-Anschlüsse	16 Digitaleingänge, 16 Digitalausgänge, 2 Analogeingänge, 2
	Analogausgänge
Werkzeug E/A-Anschlüsse	2 Digitaleingänge, 2 Digitalausgänge, 2 Analogeingänge
E/A-Stromversorgung	24 V2 A im Controller und 12 V/24 V600 mA im Werkzeug-
Kommunikation	TCP/IP 100 Mbit: IEEE 802.3u, 100BASE-TX
	Ethernetanschluss, Modbus TCP & EtherNet/IP Adapter
Programmierung	PolyScope grafische Benutzeroberfläche auf einem
	12" Touch-Screen
Lärm	Vergleichsweise geräuschlos
IP-Klassifizierung	IP54
Stromverbrauch	Ca. 200 W mit einem typischen Programm
Kollaborierender Betrieb	15 erweiterte Sicherheitsfunktionen. Gemäß:
	EN ISO 13849-1:2008, PLd und EN ISO 10218-1:2011, Abschnitt
	5.10.5
Temperatur	Der Roboter funktioniert in einer Umgebungstemperatur von 0- 50 °C
Stromversorgung	100-240 VAC 50-60 Hz
Berechnete Betriebsdauer	35 000 hours
Verkabelung	Kabel zwischen Boboter und Controller (6 m / 236 in)
	Kabel zwischen Touchscreen und Controller (4.5 m / 177 in)

Teil II

PolyScope-Handbuch

10.1 Einleitung

Der Roboter ist mit einem fortschrittlichen Sicherheitssystem ausgestattet. Abhängig von den bestimmten Charakteristiken seines Wirkungsbereichs sind die Einstellungen für das Sicherheitssystem so zu konfigurieren, dass die Sicherheit des Personals und der Geräte im Umfeld des Roboters garantiert werden kann. Das Anwenden von Einstellungen, die durch die Risikobewertung definiert wurden, gehört zu den ersten Handlungen des Integrators. Einzelheiten zum Sicherheitssystem finden Sie hier Hardware-Installationshandbuch.

GEFAHR:

- 1. Die Verwendung und Konfiguration von sicherheitsrelevanten Funktionen und Schnittstellen muss gemäß der Risikobewertung erfolgen, die der Integrator für eine bestimmte Roboteranwendung durchführt (siehe Hardware-Installationshandbuch).
- 2. Die Sicherheitskonfigurationseinstellungen für Set-up und

2. Die Sicherheitskonfigurationseinstellungen für Set-up und Teaching müssen gemäß der Risikobewertung des Integra-tors vorgenommen werden, bevor der Roboterarm zum er-sten Mal eingeschaltet wird.
3. Alle Sicherheitskonfigurationseinstellungen, auf die über die-sen Bildschirm zugegriffen werden kann, sowie deren Unter-Tabs müssen entsprechend der Risikobewertung des Integra-tors vorgenommen werden.
4. Der Integrator muss sicherstellen, dass alle Änderungen an den Sicherheitseinstellungen entsprechend seiner Risikobe-wertung durchgeführt werden.
5. Der Integrator hat dafür zu sorgen (z.B. durch einen Passwortschutz), dass es Unbefugten nicht möglich ist, Änderungen an der Sicherheitskonfiguration vorzunehmen. den Tab Installation auswählen und Sicherheit antippen. Die Sicherheitskonfiguration ist passwortgeschützt; siehe 10.8.

10.1 Einleitung

<u> (</u> Datei				14:09:14	cccc	\bigcirc			
Programm Installation	n Bewegen E/	A Protokoll							
TCP-Konfiguration	CP-Konfiguration Sicherheitskonfiguration								
Montage	Allgemeine Grei	nzen Gelenko	grenzen Grenze	en Sicherheits-E/A					
E/A-Einstellung	GEFA	HR Der Einsatz vo	on Sicherheitskonfig	gurationsparametern, d	ie sich				
😲 Sicherheit	könne	von aenen in der KISIKODEWertung des Integrators unterscheiden, können in Gefährdungen und Risiken resultieren, die sich nicht							
Variablen	angei	nessen and mine	ichena besenagen i	52W. Verningern lassen.					
MODBUS-Client	Sicherheits	voreinstellung aus	swählen:						
Funktionen				\Box					
Fließband-Tracking	Stark ei	ngeschränkt		Wenig einge	schränkt				
Ethernet/IP	Diese Tabel	le enthält die Wer	te der ausgewählte	en Voreinstellung:					
PROFINET		Grenze	Maximum	Normaler Modus					
Standardprogramm		Kraft	Max.: 250 N	150					
Laden/Speichern		Leistung	Max.: 1000 W	300					
(1)		Geschwindigkeit	Max.: 5000 mm/s	1500					
		Impuls	Max.: 100 kg m/s	25					
				Erweiterte Eins	tellungen.				
Sicherhe	itspasswort		Entriegeln	Sperren	bernehme	en			

Die Sicherheitseinstellungen bestehen aus einer Anzahl von Grenzwerten, die verwendet werden, um die Bewegungen des Roboterarms zu beschränken, und den Sicherheitsfunktionseinstellungen für die konfigurierbaren Ein- und Ausgänge. Sie werden in den folgenden Unter-Tabs auf dem Sicherheitsbildschirm definiert:

- Der Unter-Tab Allgemeine Grenzen definiert die maximale *Kraft*, *Leistung*, *Geschwindigkeit* und das maximale *Drehmoment* des Roboterarms. Wenn das Risiko besonders hoch ist, dass der Roboterarm mit einer Person oder mit Teilen seiner Umgebung kollidieren könnte, müssen diese Einstellungen auf niedrige Werte festgelegt werden. Wenn das Risiko niedrig ist, ermöglichen es höhere allgemeine Grenzen dem Roboter, sich schneller zu bewegen und mehr Kraft auf seine Umgebung auszuüben. Für weitere Details, siehe 10.10.
- Der Unter-Tab Gelenkgrenzen besteht aus den Grenzen für die *Gelenkgeschwindigkeit* und *Gelenkposition*. Die Grenzen für die *Gelenkgeschwindigkeit* definieren die maximale Winkelgeschwindigkeit individueller Gelenke und dienen der weiteren Beschränkung der Geschwindigkeit des Roboterarms. Die Grenzen für die *Gelenkposition* definieren den zulässigen Positionsbereich der individuellen Gelenke (im Gelenkraum). Für weitere Details, siehe 10.11.
- Der Unter-Tab Grenzen definiert die Sicherheitsebenen (im kartesischen Raum) und eine Werkzeugausrichtungsgrenze für den Roboter-TCP. Die Sicherheitsebenen können entweder als harte Grenzen für die Position des Roboter-TCP oder als Auslöser für die Sicherheitsgrenzen des *Reduzierten* Modus konfiguriert werden (siehe 10.6)). Die Werkzeugausrichtungsgrenze setzt eine harte Grenze für die Ausrichtung des Roboter-TCPs. Für weitere Details, siehe 10.12.
- Der Unter-Tab Sicherheits-E/A definiert Sicherheitsfunktionen für konfigurierbare Ein- und Ausgänge (siehe 13.2). Zum Beispiel kann *Notabschaltung*

als ein Eingang konfiguriert werden. Für weitere Details, siehe 10.13.

10.2 Änderung der Sicherheitskonfiguration

Änderungen bei Sicherheitskonfigurationseinstellungen sind nur gemäß der Risikobewertung des Integrators vorzunehmen.

Die empfohlene Prozedur zum Ändern der Sicherheitskonfiguration ist wie folgt:

- 1. Stellen Sie sicher, dass die Änderungen im Einklang mit der Risikobewertung des Integrators durchgeführt werden.
- 2. Passen Sie die Sicherheitseinstellungen an die Risikobewertung des Integrators an.
- 3. Stellen Sie sicher, dass die Sicherheitseinstellungen aktiv sind.
- 4. Fügen Sie den folgenden Text in das Bedienerhandbuch ein: "Stellen Sie vor jeglichen Arbeiten in der Nähe des Roboters sicher, dass die Sicherheitskonfiguration wie erwartet agiert. Dies kann beispielsweise getestet werden, indem Sie die Prüfsumme in der oberen rechten Ecke des PolyScope überprüfen (siehe 10.5 in PolyScope-Handbuch)."

10.3 Sicherheitssynchronisation und Fehler

Der Status der aktiven Sicherheitskonfiguration im Vergleich zu der aktuell in der GUI mit der Installationsdatei geladenen Konfiguration, wird durch das Schild-Symbol neben dem Text Sicherheit auf der linken Seite des Bildschirms angezeigt. Diese Symbole bieten eine unkomplizierte Anzeige des aktuellen Zustands. Sie sind wie folgt definiert:

- Konfiguration synchronisiert: Zeigt an, dass die GUI-Installation mit der derzeit aktiven Sicherheitskonfiguration übereinstimmt. Es wurden keine Änderungen vorgenommen.
- **W** *Konfiguration geändert*: Zeigt an, dass die GUI-Installation mit der derzeit aktiven Sicherheitskonfiguration NICHT übereinstimmt.

Bei der Bearbeitung der Sicherheitskonfiguration zeigt das Schild-Symbol an, ob die aktuellen Einstellungen übernommen wurden.

Wenn eines der Textfelder im Tab Sicherheit eine ungültige Eingabe enthält, befindet sich die Sicherheitskonfiguration im Fehlerzustand. Dies wird auf mehrere Arten angezeigt:

- 1. Ein rotes Fehlersymbol erscheint neben dem Text Sicherheit auf der linken Seite des Bildschirms.
- 2. Fehler enthaltende Unter-Tabs sind oben mit einem roten Fehlersymbol markiert.
- 3. Textfelder, die Fehler enthalten, werden mit einem roten Hintergrund markiert.

Wenn Fehler vorhanden sind und Sie versuchen, den Tab Installation zu verlassen, erscheint ein Dialog mit den folgenden Optionen:

- 1. Lösen Sie das Problem, um alle Fehler zu beseitigen. Dies wird angezeigt, wenn das rote Fehlersymbol nicht mehr neben dem Text Sicherheit auf der linken Seite des Bildschirms angezeigt wird.
- 2. Zuvor aktive Sicherheitskonfiguration wieder übernehmen. Verwirft jegliche Änderungen und lässt Sie nach Belieben fortfahren.

Wenn keine Fehler vorhanden sind und Sie versuchen, den Tab zu verlassen, erscheint ein Dialog mit diesen Optionen:

- Änderungen übernehmen und das System neustarten. Übernimmt die Sicherheitskonfigurationsänderungen und startet das System neu. Hinweis: Dies bedeutet nicht, dass alle Änderungen gespeichert wurden; Herunterfahren des Roboters zu diesem Zeitpunkt macht alle Änderungen an der Roboterinstallation, einschließlich der Sicherheitskonfiguration, rückgängig.
- 2. Zuvor aktive Sicherheitskonfiguration wieder übernehmen. Verwirft jegliche Änderungen und lässt Sie nach Belieben fortfahren.

10.4 Toleranzen

In der *Sicherheitskonfiguration* werden die physikalischen Grenzen festgelegt. Die Eingabefelder dieser Grenzwerte beinhalten keine Toleranzen: Toleranzen werden gegebenenfalls neben dem Feld angezeigt. Das *Sicherheitssystem* erfasst jegliche Überschreitungen der eingegebenen Grenzwerte. Der *Roboterarm* versucht, Überschreitungen des Sicherheitssystems zu verhindern und führt, wenn der Grenzwert abzüglich der Toleranz erreicht wird, durch Unterbrechung der Programmausführung einen Sicherheitsstopp durch. Beachten Sie, dass ein Programm daher möglicherweise Bewegungen nicht ausführen kann, wenn diese sehr nahe an einer Grenze liegen, d.h. der Roboter ist unter Umständen nicht in der Lage, die für das Gelenk oder den TCP angegebene Höchstgeschwindigkeit zu erreichen.

WARNUNG:

Eine Risikobewertung mit den Grenzwerten und ohne Toleranzen ist stets erforderlich.

WARNUNG:

Toleranzen sind von der Softwareversion abhängig. Beim Aktualisieren der Software werden die Toleranzen u. U. geändert. Toleranzänderungen sind stets in den Änderungsbeschreibungen neuer Versionen enthalten.

10.5 Sicherheitsprüfsumme

Der Text in der Ecke rechts oben auf dem Bildschirm bietet eine Kurzfassung der Sicherheitskonfiguration, die der Roboter derzeit nutzt. Wenn sich der Text ändert, zeigt dies an, dass sich auch die Sicherheitskonfiguration geändert hat. Durch Klicken auf die Prüfsumme werden die Details zur derzeit aktiven Sicherheitskonfiguration angezeigt.

10.6 Sicherheitsmodi

Unter normalen Bedingungen (d. h. wenn kein Sicherheitsstopp aktiv ist), befindet sich das Sicherheitssystem in einem der folgenden *Sicherheitsmodi*, von denen jeder über einen eigenen Satz von Sicherheitsgrenzen verfügt:

Normaler Modus: Der Sicherheitsmodus, der standardmäßig aktiv ist

- *Reduzierter Modus*: Ist aktiv, wenn sich der TCP des Roboters in einer *Reduzierten Modus auslösen*- Ebene befindet (siehe 10.12) oder bei Auslösung durch einen konfigurierbaren Eingang (siehe 10.13).
- *Wiederherstellungsmodus*: Kam es durch den Roboterarm zu einer Grenzwertüberschreitung eines der anderen Modi (d. h. des *Normalen* oder des *Reduzierten* Modus)¹ und wurde ein Stopp der Kategorie 0 durchgeführt, so wird der Roboterarm im *Wiederherstellungsmodus* gestartet. Dieser Modus ermöglicht die manuelle Einstellung des Roboterarms, bis alle Überschreitungen behoben sind. In diesem Modus ist es nicht möglich, Programme für den Roboter auszuführen.

WARNUNG:

Beachten Sie, dass Grenzwerte für die *Gelenkposition*, *TCP-Position* und *TCP-Ausrichtung* im *Wiederherstellungsmodus* deaktiviert sind. Lassen Sie daher beim Bewegen des Roboterarms äußerste Vorsicht walten.

Die Unter-Tabs des Sicherheitskonfigurations-Bildschirms ermöglichen es dem Benutzer, separate Sätze von Sicherheitsgrenzen für den *Normalen* und den *Reduzierten* Modus festzulegen. Die Werkzeug- und Gelenkgrenzwerte des *Reduzierten* Modus bezüglich der Geschwindigkeit und des Schwungs müssen strenger sein als die des *Normalen* Modus.

Wenn eine Sicherheitsgrenze des aktiven Grenzwertsatzes überschritten wird, führt der Roboterarm einen Stopp der Kategorie 0 aus. Wenn eine aktive Sicherheitsgrenze, wie eine Gelenkpositionsgrenze oder eine Sicherheitsebene bereits beim Einschalten des Roboterarms überschritten ist, wird er im *Wiederherstellungsmodus* gestartet. So kann er leicht in den Bereich innerhalb der Sicherheitsgrenzen bewegt werden. Im *Wiederherstellungsmodus* ist die Bewegung des Roboterarms auf einen festen Bereich beschränkt, der vom Benutzer nicht angepasst werden kann. Details zu den Grenzwerten des *Wiederherstellungsmodus* befinden sich unter Hardware-Installationshandbuch.

¹Gemäß IEC 60204-1, siehe Glossar für weitere Details.

10.7 Freedrive-Modus

Wenn sich im *Freedrive*-Modus (siehe 13.1.5) die Bewegung des Roboterarms bestimmten Grenzen annähert, fühlt der Benutzer einen Widerstand. Diese Kraft wird für die Grenzen auf Position, Ausrichtung und Geschwindigkeit des Roboter-TCPs sowie die Position und die Geschwindigkeit der Gelenke generiert.

Der Zweck dieses Widerstandes ist es, den Benutzer darüber zu informieren, dass sich die aktuelle Position oder Geschwindigkeit einem Grenzwert annähert und um zu vermeiden, dass der Roboter diese Grenze überschreitet. Wird jedoch ausreichend Kraft auf den Roboterarm durch den Benutzer ausgeübt, kann es zu einer Grenzwertüberschreitung kommen. Der Widerstand wird größer, je näher der Roboterarm sich der Grenze annähert.

10.8 Passwortsperre

Alle Einstellungen auf diesem Bildschirm sind gesperrt, bis das korrekte Sicherheitspasswort (siehe 15.3) in das weiße Textfeld unten im Bildschirm eingegeben und die Taste Entsperren gedrückt wurde. Der Bildschirm kann durch Klick auf die Taste Sperren wieder gesperrt werden. Der Tab Sicherheit wird automatisch gesperrt, wenn der Sicherheitskonfigurations-Bildschirm verlassen wird. Wenn die Einstellungen gesperrt sind, wird neben dem Text Sicherheit auf der linken Seite des Bildschirms ein Schlosssymbol angezeigt. Ein entsprechendes Symbol wird angezeigt, wenn die Einstellungen freigegeben sind.

HINWEIS:

Beachten Sie, dass der Roboterarm ausgeschaltet ist, solange der Sicherheitskonfigurations-Bildschirm freigegeben ist.

10.9 Übernehmen

Beim Freigeben der Sicherheitskonfiguration ist der Roboterarm ausgeschaltet, solange Änderungen vorgenommen werden. Der Roboterarm kann vor dem Übernehmen oder dem Abrechen der Änderungen nicht eingeschaltet werden. Danach ist ein manuelles Einschalten des Initialisierungsbildschirms erforderlich.

Alle Änderungen an der Sicherheitskonfiguration müssen vor dem Verlassen des Installations-Tab übernommen oder rückgängig gemacht werden. Diese Änderungen treten *nicht* in Kraft, bevor die Taste Übernehmen gedrückt wurde und dies bestätigt wurde. Die Bestätigung erfordert eine Sichtprüfung der Änderungen am Roboterarm. Aus Sicherheitsgründen sind die Informationen in SI-Einheiten angegeben. Ein Beispiel des Bestätigungsdialogs finden Sie untenstehend.

В	estätigung der a	angewandten Si	cherheit	skonfiguratio	on
Grenzer	Sicherheits-E Allgemeine Grei	/A Sonstige nzen	(ielenkgrenze	n
	Grenze	Normaler Modus	Reduzi	erter Modus	
	Kraft	150,00	120,	00 N	
	Leistung	300,00	200,	00 W	
	Geschwindigkeit	1,50	0, 0,	75 m/s	
	Impuls	25,00	10,	00 kg m/s	
	Sicherheitskor	figuration bestä	tigen	Ablehnen	

UNIVERSAL ROBOTS

Darüber hinaus werden die Änderungen bei der Bestätigung automatisch als Teil der aktuellen Roboterinstallation gespeichert. Siehe 13.5 für weitere Informationen zum Speichern der Roboterinstallation.

10.10 Allgemeine Grenzwerte

Die allgemeinen Sicherheitsgrenzen dienen der Begrenzung der linearen Geschwindigkeit des Roboter-TCPs und der Kraft, die dieser auf die Umgebung ausüben kann. Sie setzen sich aus den folgenden Werten zusammen:

- *Kraft*: Eine Grenze für die maximale Kraft, die der Roboter-TCP auf die Umgebung ausübt.
- *Leistung*: Eine Grenze für die maximale mechanische Arbeit, die vom Roboter in der Umgebung produziert wird, wobei berücksichtigt wird, dass die Nutzlast Teil des Roboters und nicht der Umgebung ist.
- *Geschwindigkeit*: Eine Grenze für die maximale lineare Geschwindigkeit des Roboter-TCPs.

Drehmoment: Eine Grenze für das Maximale Drehmoment des Roboters.

Es gibt zwei Wege zur Konfiguration der allgemeinen Sicherheitsgrenzen in der Installation; *Grundlegende Einstellungen* und *Erweiterte Einstellungen*, die nachstehend ausführlicher beschrieben werden.

Die Definition der allgemeinen Sicherheitsgrenzen legt nur die Grenzen für das Werkzeug, jedoch nicht die allgemeinen Grenzen des Roboterarms fest. Das bedeutet, dass trotz spezifizierter Geschwindigkeitsgrenze *nicht* garantiert ist, dass andere Teile des Roboterarms dieselbe Grenze einhalten.

Wenn sich die aktuelle Geschwindigkeit des Roboter-TCP der *Geschwindigkeitsgrenze* im *Freedrive*-Modus (siehe 13.1.5) zu sehr nähert, fühlt der Benutzer einen Widerstand, der immer stärker wird, je mehr sich die Geschwindigkeit der Grenze annähert. Die Kraft wird generiert, wenn die aktuelle Geschwindigkeit sich innerhalb von etwa 250 mm/s von der Grenze bewegt.

Grundeinstellungen Das Unterfeld allgemeine Grundeinstellungen, angezeigt als Standardbildschirm, verfügt über einen Schieber mit den folgenden vordefinierten Wertesätzen für die allgemeinen Grenzen in den *Normalen* und *Reduzierten* Modi:

Die bestimmten Wertesätze sind in der GUI dargestellt. Vordefinierte Wertesätze sind nur Vorschläge und kein Ersatz für eine ordnungsgemäße Risikobewertung.

Zu erweiterten Einstellungen wechseln Sollte *keiner* der vordefinierten Wertesätze befriedigend sein, kann die Taste Erweiterte Einstellungen... gedrückt werden, um zum Bildschirm "Erweiterte allgemeine Grenzwerte" zu gelangen.

🕂 🧕 Datei				14:09:14	cccc 🕜	
Programm Installation Bewegen E/A Protokoll						
TCP-Konfiguration	CP-Konfiguration Sicherheitskonfiguration					
Montage	Allgemeine Grer	nzen Gelenkgr	enzen Grenzen	Sicherheits-E/A		
E/A-Einstellung	Grenze	Maximum	Normaler Modus	Reduzierter Modus		
😲 Sicherheit	Kraft	Max.: 250 N	150	120	-25 N	
Variablen	Leistung	Max.: 1000 W	300	200	-0 W	
MODBUS-Client	Geschwindigkeit	Max.: 5000 mm/s	1500		-150 mm/s	
Funktionen	Impuls	Max.: 100 kg m/s	25	10	-3 kg m/s	
Fließband-Tracking						
Ethernet/IP						
PROFINET						
Standardprogramm						
肩 Laden/Speichern						
				Grundlegende Eir	stellung	
Sicherhe	eitspasswort		Entriegeln	Sperren Üt	ernehmen	

Erweiterte Einstellungen

Hier kann jede der allgemeinen Grenzen, die in 10.10 definiert sind, unabhängig von den anderen geändert werden. Dies erfolgt, indem das entsprechende Textfeld angetippt und der neue Wert eingegeben wird. Der höchste akzeptierte Wert für jede der Grenzen ist in der Spalte mit dem Namen Maximum aufgelistet. Die Kraftbegrenzung kann auf einen Wert zwischen 100 N bis 250 N und die Leistungsgrenze zwischen 80 W bis 1000 W festgesetzt werden.

Beachten Sie, dass die Felder für Grenzen im Modus *Reduziert* deaktiviert sind, wenn weder eine Sicherheitsebene noch ein konfigurierbarer Eingang für die Auslösung eingestellt sind (siehe 10.12 und 10.13 für weitere Details). Weiterhin dürfen die Grenzen für *Geschwindigkeit* und *Schwung* im Modus *Reduziert* nicht höher als ihre Gegenstücke im Modus *Normal* sein.

Die Toleranz und Einheit der Grenzen sind jeweils am Ende der zugehörigen Zeile aufgelistet. Wenn ein Programm ausgeführt wird, wird die Geschwindigkeit des Roboterarms automatisch angepasst, damit keiner der eingegebenen Werte abzüglich der Toleranz überschritten wird (siehe 10.4). Beachten Sie, dass das Minuszeichen vor den Toleranzwerten lediglich angibt, dass die Toleranz vom eingegebenen Wert abgezogen wird. Das Sicherheitssystem führt einen Stopp der Kategorie 0 durch, falls der Roboterarm die Grenze (ohne Toleranz) überschreitet.

WARNUNG:

Die Geschwindigkeitsgrenze trifft nur auf den Roboter-TCP zu. Daher können sich andere Teile des Roboterarms schneller bewegen, als durch den definierten Wert vorgegeben.

Zu allgemeinen Grundeinstellungen wechseln Durch Drücken der Taste allgemeine Grundeinstellungen... wird wieder zurück zum Bildschirm allgemeine Grenzen gewechselt und alle allgemeinen Grenzen werden auf ihren vordefinierten *Standard* zurückgesetzt. Sollten dadurch angepasste Werte verloren gehen, wird ein Pop-up-Dialog zum Bestätigen der Aktion angezeigt.

10.11 Gelenkgrenzen

<u> (</u> Datei							14:09:	17 C	ccc	0
Programm Install	ation E	ewegen E	A Pro	otokoll]					
TCP-Konfiguration	CP-Konfiguration Sicherheitskonfiguration									
Montage		Allgemeine Gre	enzen	Gelen	kgrenzen	Grenzen	Sicherhe	its-E/A		
E/A-Einstellung	Jeo	le der folgend	en Gelen	kgrenzer	n kann unat	ohängig konfi	guriert werde	en:		
😲 Sicherheit		🖉 Maximale (Geschwin	digkeit						
Variablen		Positionsb	ereich							
MODBUS-Client										
Funktionen	9	Gelenke	Bere	ich	Normale	r Modus	Reduziert	er Modus		
Fließband-Tracking					Minimum	Maximum	Minimum	Maximum		
Ethernet/IP	F	iuß	-363 —	363 °	-363	363			+3°/	-3 °
PROFINET	5	schulter	-363 —	363°	-363	363			+3°/	-3 °
	E	Ilbogen	-363 —	363°	-363	363			+3°/	-3 °
Standardprogramm	ł	-landgelenk 1	-363 —	363°	-363	363			+3°/	-3 °
🕞 Laden/Speicherr	י ا	-landgelenk 2	-363 —	363°	-363	363			+3°/	-3 °
	H	-landgelenk 3	-363 —	363°	-363	363			+3°/	-3 °
Sich	Sicherheitspasswort Entriegeln Sperren Übernehmen									

Gelenkgrenzen beschränken die Bewegung einzelner Gelenke im Gelenkraum, d.h. sie beziehen sich nicht auf den kartesischen Raum, sondern auf die interne (Drehungs-) Position der Gelenke und deren Drehgeschwindigkeit. Die Optionsschaltflächen im oberen Bereich des Unterfelds ermöglichen eine unabhängige Einstellung der Maximalen Geschwindigkeit und des Positionsbereichs für die Gelenke.

Wenn sich die aktuelle Position oder die Geschwindigkeit eines Gelenks im *Freedrive* Modus (siehe 13.1.5) den Grenzwerten zu sehr nähert, fühlt der Benutzer einen Widerstand, der immer stärker wird, je mehr sich das Gelenk der Grenze annähert. Die Kraft wird generiert, wenn die Gelenkgeschwindigkeit sich in etwa 20 °/s von der Geschwindigkeitsgrenze oder die Gelenkposition sich in etwa 8 ° der Positionsgrenze befindet.

Maximale Geschwindigkeit Diese Position definiert die maximale Winkelgeschwindigkeit für jedes Gelenk. Dies erfolgt, indem das entsprechende Textfeld angetippt und der neue Wert eingegeben wird. Der höchste akzeptierte Wert ist in der Spalte mit dem Namen Maximum aufgelistet. Keiner der Werte kann unter den Toleranzwert gesetzt werden.

Beachten Sie, dass die Felder für Grenzen im Modus *Reduziert* deaktiviert sind, wenn weder eine Sicherheitsebene noch ein konfigurierbarer Eingang für die Auslösung eingestellt sind (siehe 10.12 und 10.13 für weitere Details). Weiterhin dürfen die Grenzen im Modus *Reduziert* nicht höher als ihre Gegenstücke im Modus *Normal* sein.

Die Toleranz und Einheit der Grenzen sind jeweils am Ende der zugehörigen Zeile aufgelistet. Wenn ein Programm ausgeführt wird, wird die Geschwindigkeit des Roboterarms automatisch angepasst, damit keiner der eingegebenen Werte abzüglich der Toleranz überschritten wird (siehe 10.4). Beachten Sie, dass das Minuszeichen vor den Toleranzwerten lediglich angibt, dass die Toleranz vom eingegebenen Wert abgezogen wird. Sollte die Winkelgeschwindigkeit eines Gelenks den eingegebenen Wert (ohne Toleranz) dennoch überschreiten, führt das Sicherheitssystem einen Stopp der Kategorie 0 aus.

Positionsbereich Dieser Bildschirm definiert den Positionsbereich für jedes Gelenk. Dies erfolgt, indem das entsprechende Textfeld angetippt wird und die neuen Werte für die Ober- und Untergelenkpositionsgrenze eingegeben werden. Das eingegebene Intervall muss sich innerhalb der Werte, die in der Spalte namens Bereich aufgelistet sind, bewegen und die Untergrenze darf die Obergrenze nicht überschreiten.

Beachten Sie, dass die Felder für Grenzen im Modus *Reduziert* deaktiviert sind, wenn weder eine Sicherheitsebene noch ein konfigurierbarer Eingang für die Auslösung eingestellt sind (siehe 10.12 und 10.13 für weitere Details).

Die Toleranzen und Einheit der Grenzen sind jeweils am Ende der zugehörigen Zeile aufgelistet. Der erste Toleranzwert gilt für den Mindestwert und der zweite für den Maximalwert. Die Programmausführung wird abgebrochen, sobald die Position eines Gelenkes den Bereich, der sich aus der Addition der ersten Toleranz zum eingegebenen Mindestwert und Subtraktion der zweiten Toleranz vom eingegebenen Maximalwert errechnet, verlässt, falls es sich weiterhin entlang der voraussichtlichen Bahn fortbewegt. Beachten Sie, dass das Minuszeichen vor den Toleranzwerten lediglich angibt, dass die Toleranz vom eingegebenen Wert abgezogen wird. Sollte die Position des Gelenkes den eingegebenen Bereich dennoch verlassen, führt das Sicherheitssystem einen Stopp der Kategorie 0 aus.

10.12 Grenzen

In diesem Tab können Sie Grenzwerte bestehend aus Sicherheitsebenen und ein Limit auf der maximal zulässigen Abweichung der Roboterwerkzeugausrichtung konfigurieren. Es ist auch möglich, Ebenen zu definieren, die einen Übergang in den *Reduzierten* Modus auslösen.

Sicherheitsebenen können verwendet werden, um den zulässigen Wirkungsbereich des Roboters zu beschränken, indem erzwungen wird, dass der Roboter-TCP auf der richtigen Seite der definierten Ebenen bleibt und diese nicht durchquert. Es können bis zu acht Sicherheitsebenen konfiguriert werden. Die Beschränkung der Ausrichtung des Werkzeugs kann verwendet werden, um sicherzustellen, dass die Ausrichtung des Roboterwerkzeugs nicht um mehr als den spezifizierten Wert von einer gewünschten Ausrichtung abweicht.

WARNUNG:

Das Definieren von Sicherheitsebenen begrenzt nur den TCP, jedoch nicht die allgemeinen Grenzen des Roboterarms. Dies bedeutet, dass trotz spezifizierter Sicherheitsebene *nicht* garantiert ist, dass andere Teile des Roboterarms dieselbe Grenze einhalten. Die Konfiguration jedes Grenzlimits basiert auf einer der Funktionen, die in der aktuellen Roboterinstallation definiert sind (siehe 13.12).

HINWEIS:

Es wird dringend empfohlen, dass Sie vor der Bearbeitung der Sicherheitskonfiguration alle erforderlichen Funktionen für die Konfiguration der gewünschten Grenzlimits erstellen und ihnen entsprechende Namen zuordnen. Beachten Sie, dass mit dem Entsperren des Tab *Sicherheit* auch der Roboterarm abgeschaltet wird. Damit ist die Werkzeug-Funktion (die die aktuelle Position und Ausrichtung des Roboter-TCP beinhaltet) sowie der *Freedrive*-Modus (siehe 13.1.5) nicht mehr verfügbar.

Wenn sich im Modus *Freedrive* (siehe 13.1.5) die aktuelle Position des Roboter-TCP einer Sicherheitsebene zu sehr nähert oder sich die Ausrichtung des Roboterwerkzeugs zu sehr an die spezifizierte, maximale Abweichung annähert, fühlt der Benutzer einen Widerstand, der zunimmt, je mehr sich der TCP der Grenze annähert. Die Widerstand wird generiert, wenn sich der TCP in etwa 5 cm Abstand zu einer Sicherheitsebene befindet oder die Ausrichtungsabweichung des Werkzeugs etwa 3° von der spezifizierten maximalen Abweichung beträgt.

Wenn eine Ebene als *Reduzierten Modus auslösen*-Ebene definiert ist und der TCP sich über den Grenzwert hinaus bewegt, wird der *Reduzierte* Modus aktiv, der wiederum die Sicherheitseinstellungen des *Reduzierten* Modus aktiviert. Auslöserebenen folgen denselben Regeln wie normale Sicherheitsebenen, abgesehen davon, dass sie zulassen, dass der Roboterarm sie durchquert.

10.12.1 Auswählen einer zu konfigurierenden Grenze

Das Feld Sicherheitsgrenzwerte auf der linken Seite des Tab wird verwendet, um ein zu konfigurierendes Grenzlimit auszuwählen.

Um eine Sicherheitsebene einzurichten, klicken Sie auf einen der acht oberen Einträge, die in dem Feld aufgelistet sind. Wenn die ausgewählte Sicherheitsebene bereits konfiguriert wurde, wird die zugehörige 3D-Darstellung der Ebene in der 3D-Ansicht (siehe 10.12.2) rechts von diesem Feld hervorgehoben. Die Sicherheitsebene kann im Abschnitt Eigenschaften der Sicherheitsebene (siehe 10.12.3) im unteren Tab-Bereich eingestellt werden.

Klicken Sie auf den Eintrag Werkzeuggrenze, um die Ausrichtungsgrenze für das Roboterwerkzeug zu konfigurieren. Die Konfiguration des Limits kann im Abschnitt Eigenschaften der Werkzeuggrenze (siehe 10.12.4) im unteren Bereich des Tab spezifiziert werden.

Klicken Sie auf die Taste (•) / (•) , um die 3D-Visualisierung des Grenzlimits ein-/auszuschalten. Falls ein Grenzlimit aktiv ist, wird der *Sicherheitsmodus* (siehe 10.12.3 und 10.12.4) durch eines der folgenden Symbole angezeigt (•) / (•)

10.12.2 3D-Visualisierung

Die 3D-Ansicht zeigt die konfigurierten Sicherheitsebenen und das Limit der Ausrichtungsgrenze für das Roboterwerkzeug zusammen mit der aktuellen Position des Roboterarms an. Im Abschnitt Sicherheitsgrenzen werden alle konfigurierten Grenzeinträge, bei denen die Sichtbarkeitsschaltung ausgewählt ist (d. h. wird angezeigt), zusammen mit dem aktuell ausgewählten Grenzlimit angezeigt.

Die (aktiven) Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normalebene steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöserebenen werden in blau und grün dargestellt. Ein kleiner Pfeil zeigt die Seite der Ebene an, die *nicht* den Übergang in den *Reduzierten* Modus auslöst. Wenn eine Sicherheitsebene im Feld auf der linken Seite des Tab ausgewählt wurde, wird die zugehörige 3D-Darstellung hervorgehoben.

Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Wenn eine Ebene oder das Limit der Werkzeugausrichtungsgrenze konfiguriert, jedoch nicht aktiv ist, ist die Visualisierung grau.

Betätigen Sie die Lupensymbole, um hinein-/herauszuzoomen oder ziehen Sie einen Finger darüber, um die Ansicht zu ändern.

10.12.3 Sicherheitsebenenkonfiguration

Der Abschnitt Eigenschaften der Sicherheitsebene im unteren Teil des Tab definiert die Konfiguration der ausgewählten Sicherheitsebene im Feld Sicherheitsg im oberen linken Tab-Bereich.

10.12 Grenzen

<u> </u> Oatei			14:09:20	cccc 🕜			
Programm Installation	Bewegen E/A Pro	otokoll					
TCP-Konfiguration	CP-Konfiguration Sicherheitskonfiguration						
Montage	Allgemeine Grenzen	Gelenkgrenzen	Grenzen Sicherheits-	-E/A			
E/A-Einstellung	Sicherheitsgrenzen	-3D-Ansi	icht				
1 Cicharbait	Safety plane 0			940.			
Sichemeit	Safety plane 1						
Variablen	Safety plane 2	۲	1				
MODBUS-Client	Safety plane 3		-				
Funktionen	Safety plane 4						
The Obiened Translations	Safety plane 5						
Filesband-Tracking	Safety plane 6						
Ethernet/IP	Safety plane 7		u,				
PROFINET	Werkzeuggrenze						
Standardprogramm	Eigenschaften der Sich	erheitsebene		PALM.			
Ladon/Engishern	Name	_	Grenze restringie	ert			
E Laden/Speichern	Safety plane 1		🚺 Normal	-			
	Kopierfunktion		Verschiebung				
	🗙 Wall	5	0	-1 mm			
Sicherhe	itspasswort	Entrie	geln Sperren	Übernehmen			

Name Das Textfeld Name ermöglicht es dem Benutzer, der ausgewählten Sicherheitsebene einen Namen zuzuweisen. Dieser Name kann durch Tippen auf das Textfeld und Eingabe eines neuen Namens geändert werden.

Kopierfunktion Die Position und die Normale der Sicherheitsebene wird mithilfe einer Funktion (siehe 13.12) von der aktuellen Roboterinstallation spezifiziert. Nutzen Sie die Dropdown-Box auf der unteren linken Seite des Abschnitts Eigenschaften der Sicherheitsebene, um eine Funktion auszuwählen. Nur die Punkte und die Ebenentypenfunktionen sind verfügbar. Durch Auswahl des Elements <Nicht definiert> wird die Konfiguration der Ebene gelöscht.

Die z-Achse der ausgewählten Funktion zeigt auf den verweigerten Bereich und die Normale der Ebene in die entgegengesetzte Richtung, mit der Ausnahme, dass die Funktion Basis ausgewählt wird, in welchem Fall die Normale der Ebene in dieselbe Richtung zeigt. Falls die Ebene als *Reduzierten Modus auslösen*-Ebene konfiguriert ist (siehe 10.12.3), zeigt die Normale der Ebene die Seite an, die *nicht* den Übergang in den *Reduzierten* Modus auslöst.

Es ist zu beachten, dass die Positionsinformationen bei der Konfiguration einer Sicherheitsebene durch Auswahl einer Funktion nur in die Sicherheitsebene *kopiert* werden; die Ebene ist *nicht* mit dieser Funktion verknüpft. Dies bedeutet, dass die Sicherheitsebene bei Änderungen an der Position oder Ausrichtung einer Funktion, die zur Konfiguration einer Sicherheitsebene genutzt wurde, nicht automatisch aktualisiert wird. Wenn sich die Funktion verändert hat, wird dies durch ein ▲ Symbol angezeigt, das sich über dem Funktionseinsteller befindet. Klicken Sie die Taste 💕 neben der Auswahlfunktion, um die Sicherheitsebene mit der aktuellen Position und Ausrichtung der Funktion zu aktualisieren. Das ▲ Symbol wird auch angezeigt, wenn die ausgewählte Funktion von der Installation gelöscht wurde. **Sicherheitsmodus** Mit dem Dropdown-Menü auf der rechten Seite des Felds Eigenschaften der Sicherheitsebene wird der *Sicherheitsmodus* der Sicherheitsebene ausgewählt. Dabei stehen folgende Modi zur Auswahl:

Die Sicherheitsebene ist <i>zu keiner Zeit aktiv</i> .
Wenn sich das Sicherheitssystem im Norma-
len Modus befindet, ist eine Normaler-Modus-
Ebene aktiv und agiert als strenge Begrenzung der
TCP-Position des Roboters.
Wenn sich das Sicherheitssystem im Reduzierten
Modus befindet, ist eine Reduzierter-Modus-
Ebene aktiv und agiert als strenge Begrenzung der
TCP-Position des Roboters.
Wenn sich das Sicherheitssystem im Norma-
len oder Reduzierten Modus befindet, ist eine
Normale u. Reduzierte Modus-Ebene aktiv
und agiert als strenge Begrenzung der TCP-Position
des Roboters.
Wenn sich das Sicherheitssystem im Normalen
oder Reduzierten Modus befindet, ist eine Redu-
zierten Modus auslösen-Ebene aktiv, die bewirkt,
dass das Sicherheitssystem im Reduzierten Modus
bleibt, solange sich der TCP des Roboters außer-
halb dieser Ebene befindet.

Der ausgewählte *Sicherheitsmodus* wird durch ein Symbol im zugehörigen Eintrag im Feld Sicherheitsgrenzen angezeigt. Ist der *Sicherheitsmodus* auf Deaktiviert eingestellt, wird kein Symbol angezeigt.

Verdrängung Wenn eine Funktion in der Dropdown-Box auf der linken Seite des Felds Eigenschaften der Sicherheitsebene ausgewählt wurde, kann die Sicherheitsebene seitlich bewegt werden, indem das Textfeld Verdrängung im unteren rechten Bereich dieses Felds angetippt und ein Wert eingegeben wird. Durch die Eingabe eines positiven Werts wird der zulässige Wirkungsbereich des Roboters erhöht, indem die Ebene in die entgegengesetzte Richtung der Ebenennormalen bewegt wird. Durch die Eingabe eines negativen Werts wird der zulässige Bereich verringert, indem die Ebene in Richtung der Ebenennormalen bewegt wird.

Die Toleranz und Einheit für die Verdrängung der Grenzebene wird rechts neben dem Textfeld angezeigt.

Wirkung *strenger Grenz*-Ebenen Die Programmausführung wird abgebrochen, wenn die TCP-Position die Grenze einer aktiven, strengen Sicherheitsebene abzüglich der Toleranz überschreitet (siehe 10.4), wenn sie sich weiter entlang der voraussichtlichen Bahn fortbewegt. Beachten Sie, dass das Minuszeichen vor den Toleranzwerten lediglich angibt, dass die Toleranz vom eingegebenen Wert abgezogen wird. Das Sicherheitssystem führt einen Stopp der Kategorie 0 durch, falls die TCP-Position die festgelegte Grenze einer Sicherheitsebene (ohne Toleranz) überschreitet.

Wirkung von Reduzierten Modus auslösen- Ebenen Wenn kein Sicherheitsstopp aktiv ist und das Sicherheitssystem sich nicht in dem besonderen *Wiederherstellungsmodus* befindet (siehe 10.6), ist es entweder im *Normalen* oder im *Reduzierten* Modus und die Bewegungen des Roboterarms sind durch die jeweiligen Grenzwerte beschränkt.

Standardmäßig befindet sich das Sicherheitssystem im *Normalen* Modus. Es wechselt in den *Reduzierten* Modus, sobald eine der folgenden Situationen eintritt:

- a.) Der TCP des Roboters wird außerhalb einer *Reduzierten Modus auslösen*-Ebene positioniert, d. h. er befindet sich auf der Seite der Ebene, die der Richtung des kleinen Pfeils in der Ebenendarstellung *gegenüber* liegt.
- b.) Die Sicherheitseingangsfunktion Reduzierter Modus ist konfiguriert und die Eingangssignale sind niedrig (siehe 10.13 für weitere Details).

Wenn keiner der oben genannten Fälle mehr vorliegt, wechselt das Sicherheitssystem in den *Normalen* Modus zurück.

Wenn der Übergang vom *Normalen* in den *Reduzierten* Modus durch eine Bewegung durch eine *Reduzierten Modus auslösen*-Ebene ausgelöst wird, wechselt das System von den Grenzwerten des *Normalen* Modus zu denen des *Reduzierten* Modus. Sobald sich der TCP des Roboters 20 mm oder näher an der *Reduzierten Modus auslösen*-Ebene (jedoch noch auf der *Normalen* Modus-Seite) befindet, werden die toleranteren Grenzen des *Normalen* und *Reduzierten* Modus für die Grenzwerte angewendet. Sobald sich der TCP des Roboters auf die *Reduzierten Modus auslösen*-Ebene bewegt, werden die Grenzen des *Normalen* Modus deaktiviert und die des *Reduzierten* Modus aktiviert.

Wenn ein Übergang vom *Reduzierten* in den *Normalen* Modus durch eine Bewegung in eine *Reduzierten Modus auslösen*- Ebene ausgelöst wird, wechselt das System von den Grenzwerten des *Reduzierten* Modus zu denen des *Normalen* Modus. Sobald sich der TCP des Roboters in die *Reduzierten Modus auslösen*-Ebene bewegt, werden die toleranteren Grenzen des *Normalen* und *Reduzierten* Modus für die Grenzwerte angewendet. Sobald sich der TCP des Roboters 20 mm oder weiter von der *Reduzierten Modus auslösen*-Ebene entfernt (auf der *Normalen* Modus-Seite) befindet, sind die Grenzen des *Reduzierten* Modus nicht mehr aktiv und die des *Normalen* Modus werden aktiviert.

Wenn die voraussichtliche Bahn des TCP durch eine *Reduzierten Modus auslösen*-Ebene verläuft, wird der Roboterarm bereits vor dem Eindringen in die Ebene abgebremst, falls er sonst die Grenzwerte der Gelenkgeschwindigkeit, der Werkzeuggeschwindigkeit oder des Moments dieser Ebene überschreiten würde. Beachten Sie, dass dieser Abbremsvorgang aufgrund der geringeren Grenzwerte im *Reduzierten* Modus nur beim Übergang vom *Normalen* in den *Reduzierten* Modus möglich ist.

10.12.4 Werkzeuggrenzkonfiguration

<u> </u> Datei		14:09:22	cccc 🕜				
Programm Installation Bewegen E/A Protokoll							
TCP-Konfiguration	Sicherhe	itskonfiguration					
Montage	Allgemeine Grenzen Gelenkgrer	nzen Grenzen Sicherheits-E/A					
E/A-Einstellung	Sicherheitsgrenzen	3D-Ansicht					
1 Sicherheit	Safety plane 0	Q Q Q					
Variablen	Safety plane 2						
MODBUS-Client	Safety plane 3						
Funktionen	Safety plane 4						
Fließband-Tracking	Safety plane 6						
Ethernet/IP	Safety plane 7						
PROFINET	Werkzeuggrenze						
Standardprogramm	Werkzeuggrenzeigenschaften Abweichung	Grenze restringiert					
📊 Laden/Speichern	35 5 — 181 , -1,0 °	D Beides	-				
	Kopierfunktion <nicht definiert=""></nicht>	8					
Sicherhe	eitspasswort	Entriegeln Sperren Ü	bernehmen				

Das Feld Werkzeuggrenzeigenschaften im unteren Tab-Bereich definiert ein Limit für die Ausrichtung des Roboterwerkzeugs, das sich aus der gewünschten Werkzeugausrichtung und einem Wert für die maximal zulässige Abweichung von dieser Ausrichtung zusammensetzt.

Abweichung Das Textfeld Abweichung zeigt den Wert für die maximal zulässige Abweichung der Ausrichtung des Roboterwerkzeugs von der gewünschten Position. Ändern Sie diesen Wert, indem Sie das entsprechende Textfeld antippen und den neuen Wert eingeben.

Der zulässige Wertebereich zusammen mit der Toleranz und Einheit der Abweichung sind neben dem Feld aufgelistet.

Kopierfunktion Die gewünschte Ausrichtung des Roboterwerkzeugs wird mithilfe einer Funktion (siehe 13.12) von der aktuellen Roboterinstallation spezifiziert. Die z-Achse der ausgewählten Funktion wird als Vektor für die gewünschte Werkzeugausrichtung für dieses Limit verwendet.

Nutzen Sie die Dropdown-Box auf der unteren linken Seite des Felds Eigenschaften der Werkzeuggrenze, um eine Funktion auszuwählen. Nur die Punkte und die Ebenentypenfunktionen sind verfügbar. Durch Auswahl des Elements <Nicht definiert> wird die Konfiguration der Ebene gelöscht.

Es ist zu beachten, dass bei der Konfiguration eines Limits durch Auswahl einer Funktion die Ausrichtungsinformationen nur in das Limit *kopiert* werden; das Limit ist *nicht* mit dieser Funktion verknüpft. Das bedeutet, dass wenn Änderungen an der Position und Ausrichtung einer Funktion, die zur Konfiguration des Limits genutzt wurde, gemacht wurden, das Limit nicht automatisch aktualisiert wird. Wenn sich die Funktion verändert hat, wird dies durch ein ▲ Symbol angezeigt, das sich über dem Funktionseinsteller befindet. Klicken Sie die Taste 😂 neben der Auswahlfunktion, um das Limit mit der aktuellen Ausrichtung der Funktion zu aktualisieren. Das ▲ Symbol wird auch angezeigt, wenn die ausgewählte Funktion von der Installation gelöscht wurde.

Sicherheitsmodus Mit dem Dropdown-Menü auf der rechten Seite des Felds Werkzeuggrenzeigenschaften wird der *Sicherheitsmodus* der Werkzeugausrichtungsgrenze ausgewählt. Die verfügbaren Optionen sind:

-		
	Deaktiviert	Das Werkzeuggrenzlimit ist niemals aktiv.
	Normal	Das Werkzeuggrenzenlimit ist aktiv, wenn sich
		das Sicherheitssystem im Normalen Modus befin-
		det.
•	Reduziert	Das Werkzeuggrenzenlimit ist aktiv, wenn sich
		das Sicherheitssystem im Reduzierten Modus be-
		findet.
	Normal u. Reduziert	Das Werkzeuggrenzenlimit ist aktiv, wenn sich
		das Sicherheitssystem im Normalen oder im Redu-
		zierten Modus befindet.

Der ausgewählte *Sicherheitsmodus* wird durch ein Symbol im zugehörigen Eintrag im Feld Sicherheitsgrenzen angezeigt. Ist der *Sicherheitsmodus* auf Deaktiviert eingestellt, wird kein Symbol angezeigt.

Wirkung Die Programmausführung wird abgebrochen, wenn die Abweichung der Werkzeugausrichtung die eingegebene maximale Abweichung abzüglich der Toleranz überschreitet (siehe 10.4) und der Roboter sich weiter entlang der voraussichtlichen Bahn fortbewegt. Beachten Sie, dass das Minuszeichen vor den Toleranzwerten lediglich angibt, dass die Toleranz vom eingegebenen Wert abgezogen wird. Das Sicherheitssystem führt einen Stopp der Kategorie 0 durch, falls die Abweichung der Werkzeugausrichtung die Grenze (ohne Toleranz) überschreitet.

10.13 Sicherheits-E/A

<u> </u> Datei		14:09:26 CC	cc 🕜
Programm Installation	1 Bewegen E/A Protokoll		
TCP-Konfiguration	Sicherheits	konfiguration	
Montage	Allgemeine Grenzen Gelenkgrenzen	Grenzen Sicherheits-E/A	
E/A-Einstellung			
😲 Sicherheit	Eingangssignal	Funktionszuweisung	
Variablen	config_in[0], config_in[1]	Reduzierter Modus 🗸	
MODBUS-Client	config_in[2], config_in[3]	Schutz-Reset 🗸	
Funktionen	config_in[4], config_in[5]	Nicht zugewiesen 🗸 🗸	
Fließband-Tracking	config_in[6], config_in[7]	Nicht zugewiesen 👻	
Ethernet/IP	Ausgangssignal	Funktionszuweisung	
PROFINET			
Standardprogramm	config_out[0], config_out[1]	Roboter bewegt sich 👻	
🔚 Laden/Speichern	config_out[2], config_out[3]	Systemnotabschaltung 👻	
	config_out[4], config_out[5]	Nicht zugewiesen 👻	
	config_out[6], config_out[7]	Nicht zugewiesen 👻	
Sicherhe	itspasswort Entri	iegeln Sperren Überne	ehmen

Dieser Bildschirm definiert die *Sicherheitsfunktionen* für konfigurierbare Ein- und Ausgänge (E/A). Die E/As sind zwischen den Eingängen und Ausgängen aufgeteilt und werden paarweise so zusammengefasst, dass jede Funktion eine Kategorie² 3 und PLd E/A bereitstellt.

Jede *Sicherheitsfunktion* kann jeweils nur ein E/A-Paar steuern. Wenn Sie versuchen, dieselbe Sicherheitsfunktion ein zweites Mal auszuwählen, wird sie aus dem ersten Paar der vorher definierten E/A entfernt. Es gibt 5 *Sicherheitsfunktionen* für Eingangssignale und 4 für Ausgangssignale.

10.13.1 Eingangssignale

Für Eingangssignale können die folgenden *Sicherheitsfunktionen* ausgewählt werden: Notabschaltung, Reduzierter Modus, Schutzstopp-Reset, 3-Stufenschal und Betriebsart.

Notabschaltung Ist diese ausgewählt, ermöglicht es die Option eines alternativen Not-Aus Schalters unter Einbeziehung des auf dem Teach-Pendant befindlichen Not-Aus-Schalters. Diese bietet die gleiche Funktion wie der Not-Aus Schalter auf dem Teach Pendant, wenn ein Gerät, das ISO 13850:2006 erfüllt, angeschlossen ist.

Reduzierter Modus Alle Sicherheitsgrenzen haben zwei Modi, in denen sie angewandt werden können: *Normaler* Modus - gibt die standardmäßige Sicherheitskonfiguration an und *Reduzierter* Modus (siehe 10.6 für weitere Details). Wenn

Copyright ©2009–2016 by Universal Robots A/S Alle Rechte vorbehalten.

²Gemäß ISO 13849-1, siehe Glossar für weitere Details.

diese Eingangs-Sicherheitsfunktion gewählt ist, bewirkt ein niedriges Signal an die Eingänge, dass das Sicherheitssystem in den *Reduzierten* Modus wechselt. Wenn nötig, bremst der Roboterarm anschließend ab, um die Grenzen des *Reduzierten* Modus einzuhalten. Sollte der Roboterarm eine der Grenzen des *Reduzierten* Modus weiterhin überschreiten, führt er einen Stopp der Kategorie 0 aus. Der Wechsel zurück in den *normalen* Modus geschieht auf gleiche Weise. Beachten Sie, dass Sicherheitsebenen auch einen Wechsel in den *Reduzierten* Modus bewirken können (siehe 10.12.3 für weitere Details).

Schutzstopp-Reset Wenn ein Schutzstopp in den Sicherheits-E/As verdrahtet ist, wird dieser Eingang dazu verwendet, sicherzustellen, dass der Schutzstopp-Status beibehalten wird, bis ein Reset ausgelöst wird. Der Roboterarm bewegt sich solange nicht, wie er sich im Schutzstopp-Status befindet.

WARNUNG:

Standardmäßig ist die Schutzstopp-Eingangsfunktion für die Eingangs-Pins 0 und 1 konfiguriert. Vollständiges Deaktivieren bedeutet, dass der Roboterarm per Schutzstopp nicht länger deaktiviert bleibt, sobald der Schutzstopp-Eingabewert ansteigt. Mit anderen Worten bedeutet das, dass die Schutzstopp-Eingänge SIO und SII ohne eine Schutz-Reset-Eingabe ermitteln, ob der Schutzstopp-Status aktiv ist oder nicht (siehe Hardware-Installationshandbuch).

3-Stufenschalter und Betriebsart Diese ermöglichen die Verwendung eines 3-Punkt-Schalters als zusätzliche Schutzmaßnahme während der Installation und Programmierung des Roboters. Nachdem der 3-Stufenschalter-Eingang konfiguriert wurde, befindet sich der Roboter entweder im "Aktivbetrieb" oder "Programmiermodus". Ein Symbol in der rechten oberen Ecke zeigt die aktuelle Betriebsart an:

- Aktivbetrieb: Der Roboter kann nur vordefinierte Aufgaben ausführen. Der Tab "Move" und der Freedrive-Modus stehen nicht zur Verfügung.
- Programmiermodus: Die Einschränkungen aus dem Aktivbetrieb sind außer Kraft. Wenn jedoch der Eingang am 3-Stufenschalter LOW-Signal hat, löst der Schutzstopp des Roboters aus. Zudem wird der Geschwindigkeitsregler auf einen Anfangswert gesetzt, der 250 mm/s entspricht und der schrittweise erhöht werden kann, um eine höhere Geschwindigkeit zu erreichen. Der Geschwindigkeitsregler wird stets auf den niedrigen Wert zurückgesetzt, wenn der 3-Stufenschal Eingang von low auf high geht.

Es gibt zwei Verfahren zur Konfigurierung der Wahl der Betriebsart:

1. Um die Betriebsart mit Hilfe eines externen Modusauswahlgeräts auszuwählen, konfigurieren Sie den Betriebsart-Eingang. Die Option, mit der er konfiguriert wird, erscheint im Dropdown-Menü, sobald der 3-Stufenschalter-
Eingang eingestellt wird. Der Roboter befindet sich im *Aktivbetrieb* wenn der Betriebsart-Eingang low ist und im *Programmiermodus*, wenn er high ist.

2. Um die Betriebsart von Polyscope auszuwählen, darf nur der 3-Stufenschalter-Eingang konfiguriert sein und in der Sicherheitskonfiguration angewendet werden. In diesem Fall ist der Standardmodus *Aktivbetrieb*. Um zum *Programmiermodus* zu wechseln, wählen Sie die Taste "Roboter programmieren" auf dem Willkommensbildschirm. Um zur Betriebsart *Aktivbetrieb* zurückzukehren, beenden Sie einfach die Anzeige "Roboter programmieren".

HI N

HINWEIS:

Nachdem die Sicherheitskonfiguration für E/A mit dem aktivierten 3-Stufenschalter bestätigt wurde, wird automatisch der Begrüßungsbildschirm angezeigt. Der Startbildschirm wird ebenso automatisch angezeigt, wenn sich die Betriebsart von *Programmierung* zu *Aktivbetrieb* ändert.

10.13.2 Ausgangssignale

Für Ausgangssignale können die folgenden *Sicherheitsfunktionen* angewandt werden: Alle Signale werden wieder niedrig, wenn der Status, der das hohe Signal ausgelöst hat, vorüber ist:

System-Notabschaltung Ein LOW-Signal wird ausgegeben, nachdem das Sicherheitssystem einen per Schutz-Aus-Status ausgelöst hat. Andernfalls gibt der Roboter ein HIGH-Signal aus.

Roboterbewegung aktiv Ein LOW-Signal wird ausgegeben, wenn sich der Roboterarm in einem Bewegungsstatus befindet. Befindet sich der Roboterarm in einer statischen Position, wird ein HIGH-Signal ausgegeben.

Roboter stoppt nicht Wenn der Roboterarm zum Anhalten aufgefordert wurde, wird ab dem Zeitpunkt der Anforderung etwas Zeit vergehen, bis der Arm stoppt. Während dieser Zeit ist das Signal high. Wenn sich der Roboterarm bewegt und nicht zum Anhalten aufgefordert wurde oder er sich in einer gestoppten Position befindet, ist der Ausgang auf low geschaltet.

Reduzierter Modus Sendet ein LOW-Signal, wenn sich der Roboterarm im *Reduzierten* Modus befindet oder wenn der Sicherheitseingang mit einem Eingang des Reduzierten Modus konfiguriert ist und das Signal derzeit low ist. Andernfalls ist das Signal high.

Nicht Reduzierter Modus Dies ist das Gegenstück zum oben definierten Reduzierten Modus.

11.1 Einleitung

Der Universal Robot Arm besteht aus Rohren und Gelenken. Die Gelenke und ihre üblichen Bezeichnungen sind in Abbildung 11.1 dargestellt. Am *Fuß* ist der Roboter montiert und am anderen Ende (*Handgelenk 3*) ist das Roboterwerkzeug befestigt. Indem die Bewegung jedes der Gelenke koordiniert wird, kann der Roboter sein Werkzeug, abgesehen von dem Bereich direkt über und direkt unter des Fußflanschs, frei umherbewegen.

PolyScope ist eine grafische Benutzeroberfläche (GUI), mit der Sie den Roboterarm und das Steuergerät bedienen, Roboterprogramme ausführen und einfach neue Programme erstellen können.

Im folgenden Abschnitt finden Sie die ersten Schritte für den Betrieb des Roboters. Danach werden die Bildschirme und Funktionen von PolyScope detaillierter beschrieben.

GEFAHR:

- 1. Das Hardware-Installationshandbuch enthält wichtige Sicherheitsinformationen, die vom Integrator von UR-Robotern gelesen und verstanden werden müssen, bevor der Roboter zum ersten Mal eingeschaltet wird.
- 2. Der Integrator muss die aus der Risikobewertung definierten Sicherheitskonfigurationsparameter einstellen, bevor der Roboterarm zum ersten Mal eingeschaltet wird, siehe Kapitel 10.

Abbildung 11.1: Gelenke des Roboters. A: Fuß, B: Schulter, C: Ellbogen und D, E, F: Handgelenk 1, 2, 3

11.2 Erste Schritte

Vor der Verwendung von PolyScope müssen der Roboterarm und der Controller installiert und der Controller eingeschaltet werden.

11.2.1 Installation des Roboterarms und des Controllers

Um den Roboterarm und den Controller zu installieren, gehen Sie wie folgt vor:

- 1. Packen Sie den Roboter und den Controller aus.
- 2. Montieren Sie den Roboter auf einer stabilen, vibrationsfreien Oberfläche.
- 3. Positionieren Sie den Controller auf dessen Fuß.
- 4. Verbinden Sie den Roboter und den Controller durch Anschluss des Roboterkabels.
- 5. Stecken Sie den Netzstecker des Controllers ein.

WARNUNG:

Kippgefahr. Wird der Roboter nicht sicher auf einer stabilen Oberfläche platziert, kann er umfallen und Verletzungen verursachen.

Detaillierte Installationsanweisungen finden Sie hier: Hardware-Installationshandbuch. Beachten Sie, dass eine Risikobewertung erforderlich ist, bevor der Roboterarm für Arbeiten eingesetzt wird.

11.2.2 Ein- und Ausschalten des Controllers

Der Controller wird mit Hilfe der Power-Taste eingeschaltet. Diese befindet sich an der Vorderseite des Feldes mit dem Touch-Screen. Dieses Feld wird in der Regel *Teach Pendant* genannt. Wenn der Controller eingeschaltet ist, erscheint Text vom zugrundeliegenden Betriebssystem auf dem Touch-Screen. Nach etwa einer Minute erscheinen einige Schaltflächen auf dem Bildschirm und ein Pop-up-Fenster leitet den Benutzer zum Initialisierungsbildschirm (siehe 11.5).

Um den Controller auszuschalten, drücken Sie den grünen Ein/Aus-Schalter auf dem Bildschirm oder verwenden Sie die Schaltfläche Roboter abschalten auf dem Startbildschirm (siehe 11.4).

WARNUNG:

Eine Abschaltung durch Herausziehen des Netzkabels aus der Steckdose kann das Dateisystem des Roboters beschädigen und zu einer Fehlfunktion des Roboters führen.

11.2.3 Ein- und Ausschalten des Roboterarms

Der Roboterarm kann eingeschaltet werden, wenn der Controller eingeschaltet und kein Not-Aus-Schalter betätigt ist. Der Roboterarm wird über den Initialisierungsbildschirm (siehe 11.5) eingeschaltet, indem die Schaltfläche Ein auf dem Bildschirm und anschließend die Schaltfläche Start betätigt wird. Der Start eines Roboters ist mit einem Geräusch und leichter Bewegung während der Freigabe der Bremsen verbunden.

Die Stromversorgung zum Roboterarm kann über die Schaltfläche AUS auf dem Initialisierungsbildschirm unterbrochen werden. Der Roboter schaltet sich automatisch aus, wenn der Controller ausgeschaltet wird.

11.2.4 Schnellstart

Um den Roboter schnell zu starten, nachdem er installiert wurde, befolgen Sie die folgenden Schritte:

- 1. Betätigen Sie den Not-Aus-Schalter an der Vorderseite des Teach Pendant.
- 2. Drücken Sie den Ein/Aus-Schalter am Teach Pendant.
- 3. Warten Sie eine Minute, während das System hochfährt und Text auf dem Touch-Screen angezeigt wird.
- 4. Wenn das System bereit ist, erscheint ein Pop-up-Fenster auf dem Touch-Screen, das Ihnen mitteilt, dass der Roboter initialisiert werden muss.
- 5. Tippen Sie auf die Schaltfläche im Pop-up-Dialog. Sie werden nun zum Initialisierungsbildschirm geleitet.
- Copyright ©2009-2016 by Universal Robots A/S Alle Rechte vorbehalten. 6. Warten Sie, bis der Dialog Bestätigung der angewandten Sicherheitskonfi erscheint und drücken Sie die Taste Sicherheitskonfiguration bestätigen. Eine erste Reihe von sicherheitsrelevanten Parametern findet nun Anwendung, die auf der Grundlage einer Risikobewertung angepasst werden müssen.
- 7. Entriegeln Sie den Not-Aus-Schalter Der Roboterzustand ändert sich nun von Notabschaltung zu Roboterspannung Aus.
- 8. Verlassen Sie die Reichweite (den Wirkungsbereich) des Roboters.
- 9. Tippen Sie auf die Schaltfläche Ein auf dem Touchscreen. Warten Sie einige Sekunden bis sich der Roboterzustand zu Leerlauf ändert.
- 10. Prüfen Sie, dass die Nutzlast und die gewählte Montage korrekt sind. Sie werden benachrichtigt, wenn die anhand von Sensordaten erkannte Montage nicht der ausgewählten Montage entspricht.
- 11. Tippen Sie auf die Schaltfläche Start auf dem Touchscreen. Der Roboter gibt nun ein Geräusch von sich und bewegt sich ein wenig, während er die Bremsen entriegelt.
- 12. Berühren Sie die Schaltfläche OK, wodurch der Startbildschirm erscheint.

11.2.5 Das erste Programm

Ein Programm ist eine Auflistung von Befehlen, die dem Roboter vorgeben, was dieser zu tun hat. PolyScope ermöglicht die Programmierung des Roboters auch durch Personen mit weniger Programmiererfahrung. Für die meisten Aufgaben erfolgt die Programmierung ausschließlich mit dem Touch-Screen, ohne dabei kryptische Befehle eingeben zu müssen.

Da die Werkzeugbewegung ein wichtiger Teil eines Roboterprogramms ist, ist eine Methode wichtig, mit der man dem Roboter diese Bewegungen anlernt. In PolyScope sind die Bewegungen des Werkzeugs mithilfe einer Reihe von *Wegpunkten* vorgegeben, z. B. Punkte im Wirkungsbereich des Roboters. Ein Wegpunkt kann vorgegeben werden, indem man den Roboter in eine bestimmte Position bewegt, oder indem man diesen durch die Software berechnen lässt. Um den Roboterarm in eine bestimmte Position zu bewegen, verwenden Sie entweder den Move-Tab (siehe 13.1) oder positionieren Sie den Roboterarm per Hand, während Sie die *Freedrive*-Taste an der Rückseite des Teach Pendants gedrückt halten.

Neben der Bewegung entlang verschiedener Wegpunkte kann das Programm an bestimmten Stellen entlang des Weges des Roboters E-/A-Signale an andere Maschinen senden und aufgrund von Variablen und E-/A-Signalen Befehle ausführen, beispielsweise if...then und loop.

Um ein einfaches Programm auf einem hochgefahrenen Roboter zu erstellen, gehen Sie wie folgt vor:

- 1. Tippen Sie auf die Schaltfläche Roboter programmieren und wählen Sie Neues Programm.
- 2. Berühren Sie die Schaltfläche Weiter (unten rechts), so dass die <leere> Ziele in der Baumstruktur auf der linken Bildschirmseite gewählt wird.
- 3. Öffnen Sie den Tab Struktur.
- 4. Tippen Sie auf die Schaltfläche Move.
- 5. Öffnen Sie den Tab Befehl.
- 6. Tippen Sie auf die Schaltfläche Weiter, um die Wegpunkt-Einstellungen zu öffnen.
- 7. Berühren Sie die Schaltfläche Wegpunkt festlegen neben dem Symbol "?".
- 8. Bewegen Sie den Roboter im Move-Bildschirm, indem Sie die verschiedenen blauen Pfeile drücken oder indem Sie die Taste Freedrive auf der Rückseite des Teach Pendants gedrückt halten, während Sie den Arm des Roboters von Hand bewegen.
- 9. Drücken Sie OK.
- 10. Drücken Sie Wegpunkt davor hinzufügen.
- 11. Berühren Sie die Schaltfläche Wegpunkt festlegen neben dem Symbol "?".
- 12. Bewegen Sie den Roboter im Move-Bildschirm, indem Sie die verschiedenen blauen Pfeile drücken oder indem Sie die Freedrive-Taste gedrückt halten, während Sie den Arm des Roboters von Hand bewegen.

- 13. Drücken Sie OK.
- 14. Ihr Programm ist fertig. Der Roboter wird sich zwischen den beiden Wegpunkten bewegen, wenn Sie das Symbol "Abspielen" drücken. Treten Sie zurück und halten Sie eine Hand an der Notabschaltungstaste. Drücken Sie anschließend auf "Abspielen".
- 15. Herzlichen Glückwunsch! Sie haben Ihr erstes Roboterprogramm erstellt, welches den Roboter zwischen zwei vorgegebenen Wegpunkten bewegt.

WARNUNG:

- 1. Bewegen Sie den Roboter nicht gegen sich selbst oder andere Dinge, da dies den Roboter beschädigen kann.
- 2. Halten Sie Ihren Kopf und Oberkörper vom Wirkungsbereich des Roboters fern. Halten Sie Finger fern von Bereichen, in denen sie sich verfangen können.
- 3. Dies ist nur eine Schnellstartanleitung, um zu demonstrieren, wie einfach es ist, einen UR Roboter zu verwenden. Dabei wurde von einer gefährdungsfreien Umgebung und einem sehr vorsichtigen Benutzer ausgegangen. Erhöhen Sie nicht die Geschwindigkeit oder die Beschleunigung über die Standardwerte hinaus. Führen Sie immer eine Risikobewertung durch, bevor Sie den Roboter in Betrieb nehmen.

11.3 PolyScope-Programmierschnittstelle

PolyScope läuft auf dem Touch-Screen des Controllers.

Die oben stehende Abbildung zeigt den Startbildschirm. Die bläulichen Bereiche des Bildschirmes sind Schaltflächen, die mit dem Finger oder der Rückseite eines Stiftes betätigt werden können. PolyScope verfügt über eine hierarchische Bildschirmstruktur. In der Programmierumgebung sind die Bildschirme für einen leichten Zugang in *Tabs* (Registerkarten) angeordnet.

<u> (</u> Datei	14:07:27	cccc 🕜
Programm Installation	Bewegen E/A Protokoll	
<ungenannt></ungenannt>	Befehl Grafik Struktur Variablen	

In diesem Beispiel ist der Tab Programm auf der obersten Ebene und darunter der Tab Struktur ausgewählt. Der Tab Programm enthält Informationen zum aktuell geladenen Programm. Wenn der Tab Move ausgewählt wird, wechselt der Bildschirm zum *Move*-Bildschirm, von wo aus der Roboter bewegt werden kann. Durch die Auswahl des Tab E/A wird gleichzeitig der aktuelle Zustand der elektrischen Ein- und Ausgänge überwacht und geändert.

Der Anschluss einer Maus oder einer Tastatur an das Steuergerät bzw. das Teach Pendant ist möglich, wird jedoch nicht benötigt. Fast alle Textfelder sind durch Berührung aktivierbar, sodass eine Berührung der Felder einen Nummernblock oder eine Tastatur auf dem Bildschirm anzeigt. Textfelder, die nicht durch Berührung aktiviert werden können, verfügen über ein Editor-Symbol, über das der entsprechende Eingangs-Editor gestartet wird.

Die Symbole auf dem Nummernblock, der Tastatur und dem Funktionseditor auf dem Bildschirm finden Sie oben stehend.

Die verschiedenen Bildschirme von PolyScope werden in den folgenden Abschnitten beschrieben.

11.4 Startbildschirm

Polyscope Roboterben	utzeroberfläche	0
	Bitte wählen	
	Programm ausführen	
ROBOTS	Roboter programmieren	
	Roboter einstellen	
Über	Roboter abschalten	
		_

Nach dem Starten des Steuerungscomputers wird der Startbildschirm angezeigt. Der Bildschirm bietet die folgenden Optionen:

- **Programm ausführen:** Vorhandenes Programm auswählen und ausführen. Dies ist der einfachste Weg, den Roboterarm und das Steuergerät zu bedienen.
- **Roboter programmieren:** Ändern Sie ein Programm oder erstellen Sie ein neues Programm.
- Roboter einrichten: Ändern der Sprache, Passwörter, Software-Upgrade usw.
- Roboter abschalten: Schaltet den Roboterarm und das Steuergerät aus.
- Über: Enthält Details zu Software-Versionen, Hostname, IP-Adresse, Seriennummer und rechtliche Informationen.

11.5 Initialisierungsbildschirm

oboter	Normal	
ktuelle Nutzlast	0,00 kg	
	START	AUS
ıstallationsdatei	default	Installation laden
3D-Ansicht 🍳 🍳 🍕		
		TCP konfigurieren
		Montage konfigurieren

Mit diesem Bildschirm steuern Sie die Initialisierung des Roboterarms.

Roboterarm-Statusanzeige

Diese Status-LED zeigt den aktuellen Status des Roboterarms an:

- Eine helle, rote LED zeigt an, dass sich der Roboterarm derzeit im Stoppzustand befindet, wofür es mehrere Gründe geben kann.
- Eine helle, gelbe LED zeigt an, dass der Roboterarm eingeschaltet ist, jedoch nicht für den normalen Betrieb bereit ist.
- Eine grüne LED zeigt an, dass der Roboterarm eingeschaltet und für den normalen Betrieb bereit ist.

Der neben der LED erscheinende Text beschreibt den aktuellen Status des Roboterarms näher.

Aktive Nutzlast und Installation

Wenn der Roboterarm eingeschaltet ist, wird die Nutzlastmasse, die vom Steuergerät beim Bedienen des Roboterarms verwendet wird, in dem kleinen, weißen Textfeld angezeigt. Dieser Wert kann durch Tippen auf das Textfeld und Eingabe eines neuen Werts geändert werden. Beachten Sie, dass das Festlegen dieses Werts nicht die Nutzlast in der Installation des Roboters (siehe 13.6) ändert. Nur die vom Steuergerät verwendete Nutzlast wird festgelegt.

Gleichermaßen wird der Name der aktuell geladenen Installationsdatei in dem grauen Textfeld angezeigt. Eine andere Installation kann durch Tippen auf das Textfeld oder mithilfe der danebenliegenden Taste Laden geladen werden. Alternativ kann die geladene Installation mithilfe der Tasten neben der 3D-Ansicht im unteren Bereich des Bildschirms angepasst werden.

Vor dem Starten des Roboterarms ist es sehr wichtig, zu verifizieren, dass sowohl die aktive Nutzlast als auch die aktive Installation zu der Situation gehören, in der sich der Roboterarm derzeit befindet.

Initialisierung des Roboterarms

GEFAHR:

Stellen Sie stets sicher, dass die tatsächliche Nutzlast und Installation korrekt ist, bevor Sie den Roboterarm starten. Wenn diese Einstellungen falsch sind, funktionieren der Roboter und das Steuergerät nicht korrekt und können eine Gefährdung für Menschen oder Geräte in ihrem Umfeld darstellen.

VORSICHT:

Besondere Aufmerksamkeit sollte der Vermeidung jeglicher Berührung des Roboterarms mit einem Hindernis oder Tisch gelten, da ein Gelenkgetriebe beschädigt werden kann, wenn der Roboterarm in ein Hindernis gesteuert wird.

Die große Taste mit dem grünen Symbol dient zur Durchführung der eigentlichen Initialisierung des Roboterarms. Der Text darauf und die Aktion, die sie ausführt, verändern sich je nach Lage, in welcher sich der Roboterarm aktuell befindet.

- Nachdem der Controller-PC hochgefahren ist, muss die Taste einmal angetippt werden, um den Roboterarm einzuschalten. Der Roboterarmstatus wechselt dann zu *Power on* und anschließend in den *Leerlauf*. Bitte beachten Sie, dass der Roboterarm nicht eingeschaltet werden kann, wenn ein Not-Aus vorliegt
 daher wird die Taste deaktiviert.
- Ist der Roboterarm im *Leerlauf*, muss die Taste noch einmal angetippt werden, um den Roboterarm zu starten. Nun werden die Sensordaten hinsichtlich der konfigurierten Aufstellung des Roboterarms geprüft. Wird eine fehlende Übereinstimmung entdeckt (mit einer Toleranz von 30°), wird die Taste deaktiviert und unter ihr eine Fehlermeldung angezeigt.

Ist die Montageprüfung bestanden, werden durch Antippen der Taste alle Gelenkbremsen gelöst und der Roboterarm ist bereit für den normalen Betrieb. Bitte beachten Sie, dass der Roboter nun ein Geräusch von sich gibt und sich ein wenig bewegt, während er die Bremsen entriegelt.

• Überschreitet der Roboterarm eine der Sicherheitsgrenzen, nachdem er gestartet wird, arbeitet er in einem speziellen *Wiederherstellungsmodus*. In diesem Modus wird durch Tippen auf die Taste in einen Wiederherstellungsmodus gewechselt, in dem der Roboterarm in die Sicherheitsgrenzen zurückbewegt werden kann.

- Tritt eine Störung auf, kann der Controller mithilfe der Taste neugestartet werden.
- Falls der Controller momentan nicht läuft, kann es durch Antippen der Taste gestartet werden.

Die kleinere Taste mit dem roten Symbol dient zum Ausschalten des Roboterarms.

12.1 Ausdruckseditor auf dem Bildschirm

Während der Ausdruck selbst als Text bearbeitet wird, verfügt der Ausdruckseditor über eine Vielzahl von Schaltflächen und Funktionen zur Eingabe der speziellen Ausdruckssymbole, wie zum Beispiel * zur Multiplikation und \leq für kleiner gleich. Die Tastatursymbol-Schaltfläche oben links im Bildschirm schaltet auf Textbearbeitung des Ausdrucks um. Alle definierten Variablen sind in der Variablen enthalten, während die Namen der Ein- und Ausgangsanschlüsse in den Auswahlfunktionen Eingang und Ausgang zu finden sind. Einige Sonderfunktionen finden Sie unter Funktion.

Der Ausdruck wird auf grammatische Fehler überprüft, wenn Sie die Schaltfläche OK betätigen. Mit der Schaltfläche Abbrechen verlassen Sie den Bildschirm und verwerfen alle Änderungen.

Ein Ausdruck kann wie folgt aussehen:

digital_in[1]=Wahr und analog_in[0]<0.5

12.2 Bearbeitungsanzeige "Pose"

Auf diesem Bildschirm können Sie die Zielpositionen der Gelenke oder eine Zielpose (Position und Ausrichtung) des Roboterwerkzeugs festlegen. Diese Anzeige ist "offline" und steuert den Roboterarm nicht direkt.

Roboter	Funktion		0
	i dinktion	Ansicht 💌	
	ТСР		
	x	-120,11 mm	÷ –
	Y	-431,76 mm	÷ –
	z	300 mm	÷ -
	Rotationsvel	ctor [rad]	-
	RX	0,0012	÷ –
	RY	-3,1664	÷ -
	RZ	-0,0395	÷ –
	Gelenkpositi	onen	
<u>U</u> .	Fuß	-91,71 °	÷ –
	Schulter	-98,96 °	÷ -
	Ellbogen	-126,22 °	
	Handgelenk 1	-46,29 °	
	Handgelenk 2	91,39 °	
	Handgelenk 3	-1,78 °	÷ –
		🗙 Abbrechen	🖋 ок

Roboter

Die aktuelle Position des Roboterarms und die festgelegte neue Zielposition werden in 3D-Grafiken angezeigt. Die 3D-Zeichnung des Roboterarms zeigt die aktuelle Position des Roboterarms an, während der "Schatten" des Roboterarms die Zielposition des Roboterarms angibt, die durch die festgelegten Werte auf der rechten Bildschirmseite gesteuert wird. Betätigen Sie die Lupensymbole, um hinein-/herauszuzoomen oder ziehen Sie einen Finger darüber, um die Ansicht zu ändern.

Wenn die spezifizierte Zielposition des Roboter-TCP einer Sicherheits- oder Auslöserebene nahe ist oder die Ausrichtung des Roboterwerkzeugs sich nahe am Limit der Werkezugausrichtungsgrenze (siehe 10.12) befindet, wird eine 3D-Darstellung des Näherungslimits der Grenze angezeigt.

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normal-Ebene steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöserebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil angezeigt, der auf die Seite der Ebene zeigt, auf der die Grenzen des Modus *Normal* (siehe 10.6) aktiv sind. Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Wenn der Zielroboter-TCP sich nicht mehr in Nähe zum Limit befindet, verschwindet die 3D-Darstellung. Wenn der Ziel-TCP ein Grenzlimit überschreitet oder dem sehr nahe ist, ändert sich die Limitanzeige zu rot.

Funktion und Werkzeugposition

Oben rechts auf dem Bildschirm ist der Funktionseinsteller zu finden. Er legt fest, welche Funktion des Roboterarms angesteuert wird.

Der Name des aktuell aktiven Tool Center Point (TCP) wird unterhalb des Funktionseinstellers angezeigt. Weitere Informationen zur Konfigurationen mehrerer bezeichneter TCPs finden Sie hier 13.6. Die Textfelder zeigen die vollständigen Koordinatenwerte dieses TCPs relativ zur ausgewählten Funktion an. x, y und z steuern die Position des Werkzeugs, während rx, ry und rz die Ausrichtung des Werkzeugs koordinieren.

Verwenden Sie das Auswahlmenü über den Feldern rx, rx und rz, um die Ausrichtungsdarstellung auszuwählen. Die folgenden Typen stehen zur Verfügung:

- Rotationvektor [rad] Die Ausrichtung wird als *Rotationsvektor* angegeben. Die Länge der Achse entspricht dem zu drehenden Winkel in Radianten, und der Vektor selbst gibt die Achse an, um die die Drehung erfolgt. Dies ist die Standardeinstellung.
- **Rotationsvektor** [°] Die Ausrichtung wird als *Rotationsvektor* angegeben, wobei die Länge des Vektors der Rotationswinkel in Grad ist.
- **RPY** [rad] *Roll-, Nick-* und *Gier-*Winkel (*RPY*), die als Radianten angegeben werden. Die RPY-Rotationsmatrix (x-, y'-, z" Rotation) wird angegeben durch:

 $R_{rpy}(\gamma,\beta,\alpha) = R_Z(\alpha) \cdot R_Y(\beta) \cdot R_X(\gamma)$

• **RPY** [°] *Roll-, Nick-* und *Gier-Winkel (RPY), die in Grad angegeben werden.*

Die Werte können bearbeitet werden, indem Sie auf die Koordinate klicken. Durch Klicken auf die Schaltflächen + und – rechts neben einem Feld können Sie den aktuellen Wert um einen Betrag erhöhen oder verringern. Durch Gedrückthalten einer Schaltfläche wird der Wert direkt erhöht/verringert. Je länger Sie die Schaltfläche gedrückt halten, desto mehr wird der Wert erhöht oder verringert.

Gelenkpositionen

Ermöglicht die direkte Festlegung der einzelnen Gelenkpositionen. Jede Gelenkposition kann einen Wert im Bereich von -360° bis $+360^{\circ}$ aufweisen, wobei es sich um die *Gelenkgrenzen* handelt. Die Werte können bearbeitet werden, indem Sie auf die Gelenkposition klicken. Durch Klicken auf die Schaltflächen + und – rechts neben einem Feld können Sie den aktuellen Wert um einen Betrag erhöhen oder verringern. Durch Gedrückthalten einer Schaltfläche wird der Wert direkt erhöht/verringert. Je länger Sie die Schaltfläche gedrückt halten, desto mehr wird der Wert erhöht oder verringert.

Schaltfläche "OK"

Wenn dieser Bildschirm auf dem Move-Tab aktiviert wurde (siehe 13.1), gelangen Sie durch Klicken auf die Schaltfläche OK zurück zum Move-Tab, auf dem sich der Roboterarm in die festgelegte Zielposition bewegt. Wenn der zuletzt festgelegte Wert eine Werkzeugkoordinate war, bewegt sich der Roboterarm mithilfe der Bewegungsart *MoveL*-Tab in die Zielposition. Im Gegensatz dazu bewegt sich der Roboterarm mithilfe der Bewegungsart *MoveJ*-Tab in die Zielposition, wenn zuletzt eine Gelenkposition festgelegt wurde. Die unterschiedlichen Bewegungsarten werden im Abschnitt 14.5 erklärt.

Schaltfläche "Abbrechen"

Mit der Schaltfläche "Abbrechen" verlassen Sie den Bildschirm und verwerfen alle Änderungen.

13.1 Move-Tab

Mit diesem Bildschirm können Sie den Roboterarm immer direkt bewegen (Joystick-Steuerung), entweder durch Versetzung/Drehung des Roboterwerkzeugs oder durch Bewegung der einzelnen Robotergelenke.

13.1.1 Roboter

der Grenze angezeigt. Beachten Sie, dass die Visualisierung der Grenzlimits deaktiviert wird, während der Roboter ein Programm ausführt.

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Ebene Normal steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöserebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil angezeigt, der auf die Seite der Ebene zeigt, auf der die Grenzen des Modus *Normal* (siehe 10.6) aktiv sind. Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Wenn der Roboter-TCP sich nicht mehr in Nähe zum Limit befindet, verschwindet die 3D-Darstellung. Wenn der TCP einen Grenzwert überschreitet oder dem sehr nahe ist, ändert sich die Limitanzeige zu rot.

13.1.2 Funktion und Werkzeugposition

Oben rechts auf dem Bildschirm ist der Funktionseinsteller zu finden. Er legt fest, welche Funktion des Roboterarms angesteuert wird.

Der Name des aktuell aktiven Tool Center Point (TCP) wird unterhalb des Funktionseinstellers angezeigt. Die Textfelder zeigen die vollständigen Koordinatenwerte dieses TCPs relativ zur ausgewählten Funktion an. Weitere Informationen zur Konfigurationen mehrerer bezeichneter TCPs finden Sie hier 13.6.

Werte können manuell durch Anklicken der Koordinaten oder der Gelenkpositionen bearbeitet werden. Dies führt Sie auf den Posenbearbeitungsbildschirm (siehe 12.2), auf dem Sie eine Zielposition und die Ausrichtung des Werkzeugs oder der Zielgelenkpositionen angeben.

13.1.3 Bewegung des Werkzeuges

- Das Gedrückthalten eines Bewegungspfeils (oben) bewegt die Werkzeugspitze des Roboters in die angegebene Richtung.
- Das Gedrückthalten eines Drehungspfeils (unten) dreht die Ausrichtung der Werkzeugspitze des Roboters in die angegebene Richtung. Der Drehpunkt ist der Werkzeugmittelpunkt (TCP), d. h. der Punkt am Ende des Roboterarms, der einen charakteristischen Punkt auf dem Roboterwerkzeug ergibt. Der TCP wird kleine blaue Kugel dargestellt.

Hinweis: Lassen Sie die Schaltfläche los, um die Bewegung jederzeit zu stoppen!

13.1.4 Bewegung der Gelenke

Ermöglicht die direkte Steuerung der einzelnen Gelenke. Jedes Gelenk kann sich von -360° bis $+360^{\circ}$ bewegen. Dies sind die standardmäßigen *Gelenkgrenzen*, die für jedes Gelenk durch eine horizontale Leiste dargestellt werden. Wenn ein Gelenk seine Grenze erreicht, kann es sich nicht weiter weg bewegen. Wenn die Grenzen für ein Gelenk mit einem Positionsbereich konfiguriert wurden, der sich vom Standard (siehe 10.11) unterscheidet, wird dieser Bereich auf der horizontalen Leiste in Rot angezeigt.

13.1.5 Freedrive

Während die *Freedrive*-Taste gedrückt ist, kann der Roboterarm festgehalten und an die gewünschte Stelle gezogen werden. Wenn die Gravitationseinstellung (siehe 13.7) im Tab Setup falsch ist oder der Roboterarm eine schwere Last trägt, kann sich der Roboterarm bewegen (herabfallen), während die *Freedrive*-Taste gedrückt wird. Lassen Sie die *Freedrive*-Taste in diesem Fall einfach los.

WARNUNG:

- Stellen Sie sicher, dass Sie die richtigen Installationseinstellungen verwenden (z. B. Robotermontagewinkel, Gewicht in TCP, TCP-Ausgleich). Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.
- 2. Stellen Sie sicher, dass die TCP-Einstellungen und die Robotermontageeinstellungen korrekt eingestellt sind, bevor die Freedrive-Taste bedient wird. Sind diese Einstellungen falsch, bewegt sich der Roboterarm, sobald die Freedrive-Taste aktiviert wird.
- Die Freedrive-Funktion (Impedanz/Zurückfahren) sollte nur bei Installationen verwendet werden, in denen die Risikobewertung dies zulässt. Werkzeuge und Hindernisse sollten keine scharfen Kanten oder Klemmpunkte haben. Stellen Sie sicher, dass sich niemand in der Reichweite des Roboterarms befindet.

13.2 E/A-Tab

🜒 Datei		14:08:47 CCCC 🕜
Programm Installation Bewegen I	A Protokoll	
Roboter MODBUS-Client		
Konfigurierbarer Eingang	Digitaler Eingang	Werkzeugeingang
S-Guard	0 3 4 1 3 5 2 3 6 3 3 7	Digital O I
Analoger Eingang analog_in[0] 0,00 ∨ Spannung ▼ 0∨ 10V	analog_in[1] 0,00 ∨ Spannung ▼ 0V 10V	analog_in[2] 0.00 ∨ Spannung_in[3] 0.00 ∨ Spannung_v
Konfigurierbarer Ausgang 0 0 4 1 0 5 2 0 6 3 0 7	Digitaler Ausgang 0 0 4 1 0 5 2 0 6 2 0 7	Werkzeugausgang Digital 0 0 1
Amalog_out[0] 4mA 20mA	analog_out[1] 4mA 20mA	Spannung , , , , , , , , , , , , ,
 Simulation Realer Roboter 		

In diesem Bildschirm können Sie die spannungsführenden E/A-Signale vom/zum Controller stets überwachen und einstellen. Der Bildschirm zeigt den aktuellen Zustand der Ein- und Ausgänge an, einschließlich während der Programmausführung. Werden während der Ausführung des Programms Änderungen vorgenommen, so stoppt das Programm. Wenn ein Programm stoppt, behalten alle Ausgangssignale ihren Status bei. Der Bildschirm wird bei nur 10 Hz aktualisiert, sodass ein sehr schnelles Signal eventuell nicht richtig angezeigt wird.

Konfigurierbare E/A können reserviert werden für spezielle Sicherheitseinstellungen, die im Abschnitt Sicherheits-E/A-Konfiguration der Installation (siehe 10.13) definiert sind; reservierte E/A tragen den Namen der Sicherheitsfunktion anstatt dem Standardnamen oder einem benutzerdefinierten Namen. Konfigurierbare Ausgänge, die für Sicherheitseinstellungen reserviert sind, können nicht bedient werden und werden nur als LEDs angezeigt.

Die elektrischen Angaben der Signale sind im Benutzerhandbuch beschrieben.

Einstellung Analogdomäne Die analogen E/A können entweder auf Stromausgang [4-20 mA] oder Spannungsausgang [0-10 V] eingestellt werden. Die Einstellungen werden für mögliche spätere Neustarts des Controllers bei der Speicherung eines Programms gespeichert.

13.3 MODBUS-Client-E/A

Hier werden die digitalen E/A-Signale des MODBUS-Client angezeigt, wie sie in der Installation eingegeben wurden. Bei einem Verlust der Signalverbindung wird der entsprechende Eintrag auf dem Bildschirm deaktiviert.

Programm	Installation	Bewegen	E/A	Protokoll]	
Roboter	MODBUS-Client]			1	
Eingänge MODI	BUS				Ausgänge MODBUS	

Eingänge

Rufen Sie den Status der digitalen MODBUS-Eingänge auf.

Ausgänge

Rufen Sie den Status der digitalen MODBUS-Ausgänge auf und schalten Sie zwischen ihnen um. Ein Signal kann nur umgeschaltet werden, wenn die Auswahl für die Steuerung über den Tab "E/A" (beschrieben unter 13.8) dies zulässt.

13.4 AutoMove-Tab

Der Tab "AutoMove" wird eingesetzt, wenn sich der Roboter in eine bestimmte Position innerhalb seines Wirkungsbereichs bewegen muss. Dazu gehört beispielsweise, wenn sich der Roboterarm laut Programm in eine Startposition bewegen muss, um dieses auszuführen oder wenn er sich während einer Programmänderung zu einem Wegpunkt bewegt.

🖉 Datei	14:07:21	cccc	\bigcirc
Laufen Bewegen E/A Protokoll Automove			
Bewegen Sie den Roboter in Pos	ition.		
"Auto" gedrückt halten, um die gezeigte Bewegung durchzuführen. Die Taste losla "Manuell" drücken, um den Roboter von Hand in Position zu bringen.	ssen, um abzub	rechen.	
	Auto		
	Manuell		
		🗙 Abbrech	en

Animation

Die Animation zeigt die Bewegung, die der Roboterarm ausführen wird.

VORSICHT:

Vergleichen Sie die Animation mit der Position des echten Roboterarms und stellen Sie sicher, dass der Roboterarm die Bewegung sicher ausführen kann, ohne auf Hindernisse zu treffen.

VORSICHT:

Mit der Automove-Funktion wird der Roboter entlang der Schattenbahn bewegt. Kollisionen können den Roboter oder andere Geräte beschädigen.

Auto

Halten Sie die Schaltfläche Auto gedrückt, um den Roboterarm wie in der Animation zu bewegen. Hinweis: *Lassen Sie die Schaltfläche los, um die Bewegung jederzeit zu stoppen!*

Manuell

Drücken Sie die Schaltfläche Manuell, um zum Move-Tab zu gelangen, wo der Roboter manuell bewegt werden kann. Dies ist nur erforderlich, wenn eine andere Bewegung als die der Animation gewünscht ist.

13.5 Installation \rightarrow Laden/Speichern

🜒 Datei	14:08:10 CCCC 🕜
Programm Installation	Bewegen E/A Protokoll
TCP-Konfiguration	Roboterinstallation auf Datei
Montage	laden/speichern
E/A-Einstellung	Die Roboterinstallation deckt alle Aspekte der Platzierung des Roboters in seinem
Sicherheit	Verbindungen zu anderen Geräten sowie alle Optionen von denen das Roboters, die elektrischen Jahängt Es beinhaltet iedoch nicht das Programm selbst
Variablen	abhange. Es bennaiter jedeen nien das nogramm seibst.
MODBUS-Client	Die aktuelle Installation speichern
Funktionen	default
Fließband-Tracking	Speichern Speichern als
Ethernet/IP	Laden Sie eine andere Installationsdatei
PROFINET	Laden Neu erstellen
Standardprogramm	
🕞 Laden/Speichern	

Die Roboterinstallation deckt alle Aspekte dessen ab, wie der Roboterarm und der Controller in ihrem Arbeitsumfeld platziert werden. Dies beinhaltet die mechanische Befestigung des Roboterarms, die elektrischen Verbindungen zu anderen Geräten sowie alle Optionen, von denen das Roboterprogramm abhängt. Es beinhaltet jedoch nicht das Programm selbst.

Diese Einstellungen können mithilfe der verschiedenen Bildschirme unter dem Tab Installation vorgenommen werden. Einstellungen für die E/A-Domänen werden im Tab E/A gemacht (siehe 13.2).

Es ist möglich, mehr als eine Installationsdatei für den Roboter zu haben. Die erstellten Programme verwenden die aktive Installation und laden diese automatisch, wenn sie verwendet wird.

Alle Änderungen an einer Installation müssen gespeichert werden, um nach dem Herunterfahren erhalten zu bleiben. Wenn es während der Installation nicht gespei-

cherte Änderungen gibt, wird ein Diskettensymbol neben dem Laden/Speichern-Text auf der linken Seite des Tab Installation angezeigt.

Eine Installation kann durch Drücken der Tasten Speichern oder Speichern als... gespeichert werden. Alternativ wird die aktive Installation durch das Speichern eines Programms gespeichert. Nutzen Sie die Taste Laden, um eine andere Installationsdatei zu laden. Die Taste Neu erstellen setzt alle Einstellungen in der Roboterinstallation auf die Werkseinstellungen zurück.

VORSICHT:

Die Verwendung des Roboters mit einer von einem USB-Laufwerk geladenen Installation wird nicht empfohlen. Um eine Installation, die auf einem USB-Laufwerk gespeichert ist, auszuführen, laden Sie sie zuerst und speichern Sie sie dann im lokalen Ordner Programme mithilfe der Schaltfläche Speichern als....

13.6 Installation \rightarrow TCP-Konfiguration

Ein *Tool Center Point* (TCP) ist ein charakteristischer Punkt auf dem Roboterwerkzeug. Auf diesem Bildschirm können mehrere benannte TCPs festgelegt werden. Jeder TCP enthält eine Verschiebung und Drehung bezogen auf die Mitte des Werkzeugausgangsflanschs (siehe Informationen auf den Bildschirmgrafiken). Die Positionskoordinaten, x, y und z bestimmen die Position eines TCP, während rx, ry und rz seine Ausrichtung angeben. Wenn alle angegebenen Werte Null sind, fällt der TCP mit dem Mittelpunkt des Werkzeugausgangsflanschs zusammen und nimmt das an der rechten Seite des Bildschirms dargestellte Koordinatensystem an.

13.6.1 Hinzufügen, Ändern und Entfernen von TCPs

Um einen neuen TCP zu definieren, drücken Sie die Taste Neu. Der so erstellte TCP erhält dann automatisch einen eineindeutigen Namen und wird im Dropdown-Menü ausgewählt.

Die Verschiebung und Rotation des gewählten TCP kann durch Antippen der jeweiligen weißen Textfelder und Eingabe neuer Werte geändert werden.

Um den ausgewählten TCP zu entfernen, tippen Sie einfach auf die Entfernen-Taste. Der letzte verbleibende TCP kann nicht gelöscht werden.

13.6.2 Standard-TCP und aktiver TCP

Genau einer der konfigurierten TCPs ist der *Standard*-TCP. Der Standard-TCP wird durch ein grünes Symbol links von seinem Namen im TCP-Dropdown-Menü markiert. Um den aktuell ausgewählten TCP als Standard festzulegen, drücken Sie die Taste Als Standard festlegen.

Ein TCP-Offset wird immer als der *aktive* verwendet, um alle linearen Bewegungen im kartesischen Raum zu bestimmen. Im Übrigen ist die Bewegung des aktiven TCP im Grafik-Tab veranschaulicht (siehe 14.29). Bevor ein Programm gestartet oder ausgeführt wird, wird der Standard-TCP auf "aktiv" gesetzt. Innerhalb eines Programms kann jeder der angegebenen TCPs für eine bestimmte Bewegung des Roboters als aktiv gesetzt werden (siehe 14.5 und 14.10).

13.6.3 TCP-Position anlernen

Programm Installat	ion Be	ewegen [E/A	Protokoll	
TCP-Konfiguration	E	instellu	ung für den We	erkzeugmittelpunkt
Montage	Verfü	gbare TCPs:		TCP-Position anlernen
E/A-Einstellung	1	тср 🔻	Als Standard vorein	_
😋 Sicherheit	x	0.0 mm		Weitere Punkte benötigt
Variablen	Y	0.0 mm	Position	TCP aus unterschiedlichen Winkeln in die gleiche Position bringen
MODBUS-Client	z	0.0 mm	Rusrichtung	
Funktionen	RX			Punkt 1 festlegen
– Fuß – Werkzeug	RY		Neu	Puplit 2 factlogon
Fließband-Tracking	RZ		Entfernen	Pulikt 2 lestlegen
Ethernet/IP	Nutzla	ast: 0,00 k	g	Punkt 3 festlegen
PROFINET		hwernunkt.		
Standardprogramm	cx	0.0 mm		Punkt 4 festlegen
Laden/Speichern	CY	0.0 mm		
	cz	0.0 mm		<i>instellen</i> Xabbrecher

TCP-Positionskoordinaten können wie folgt automatisch berechnet werden:

1. Tippen Sie auf die Taste $\ref{eq: Solution}$ Position.

- 2. Wählen Sie einen festen Punkt im Wirkungsbereich des Roboters.
- 3. Verwenden Sie die Schaltflächen auf der rechten Seite des Bildschirms, um den TCP aus mindestens drei verschiedenen Winkeln an den gewählten Punkt zu bewegen und um die entsprechenden Positionen des Werkzeugausgangsflanschs zu speichern.
- 4. Überprüfen Sie die berechneten TCP-Koordinaten und übertragen Sie sie auf den ausgewählten TCP mithilfe der Einstellen-Taste.

Beachten Sie, dass die Positionen ausreichend vielfältig sein müssen, damit die Berechnung korrekt funktioniert. Sind sie es nicht, leuchtet eine rote Status-LED über den Tasten.

Obwohl drei Positionen in der Regel ausreichend sind, um den richtigen TCP zu bestimmen, kann die vierte Position dazu beitragen, sicherzustellen, dass die Berechnung korrekt ist. Die Qualität jedes gespeicherten Punktes in Bezug auf den berechneten TCP wird mit einer grünen, gelben oder roten LED auf der jeweiligen Taste signalisiert.

13.6.4 TCP-Ausrichtung anlernen

<u> (</u> Datei						14:08:03 CCCC 🕜
Programm Installatio	n Be	wegen	E/A	Protokoll		
TCP-Konfiguration	E	inst	ellu	ıng für c	len V	Verkzeugmittelpunkt
Montage	Verfü	gbare TCF	's:			TCP-Orientierung anlernen
E/A-Einstellung	1	ТСР	-	Als Standard	l vorein	
🔁 Sicherheit	X	0.0	mm			Keine Funktion ausgewählt
Variablen	Y		mm	R Posi	tion	Wählen Sie eine Funktion und legen Sie einen Punkt fest, während das
MODBUS-Client	z [mm	R Ausric	htung	Werkzeug in Richtung der Z-Achse der gewählten Funktion zeigt.
Funktionen	RX					
– Fuß – Werkzeug	RY			Neu	1	
Fließband-Tracking	RZ			Entferi	nen	Punkt festlegen
Ethernet/IP		t. 0	00 10			
PROFINET	NULZIA		,00 K	9		
Standardprogramm	So	hwerpunk	d:			
Standaraprogramm	CX		mm			Einstellen Xabbrechen
Laden/Speichern	CY		mm			
	cz		mm			

Die TCP-Ausrichtung kann wie folgt automatisch berechnet werden:

- 1. Tippen Sie auf die Taste 🔻 Ausrichtung.
- 2. Wählen Sie eine Funktion aus der Dropdown-Liste. Für weitere Informationen darüber, wie neue Funktionen definiert werden können, siehe 13.12.
- 3. Verwenden Sie die Schaltfläche unten, um zu einer Position zu gehen, in der die Ausrichtung des Werkzeugs entsprechend dem TCP mit dem Koordinatensystem der ausgewählten Funktion übereinstimmt.

4. Überprüfen Sie die berechnete TCP-Ausrichtung und übertragen Sie sie auf den ausgewählten TCP mithilfe der Einstellen-Taste.

13.6.5 Nutzlast

Das Gewicht des Roboterwerkzeugs ist im unteren Teil des Bildschirms angezeigt. Um diese Einstellung zu ändern, tippen Sie einfach in das weiße Textfeld und geben Sie ein neues Gewicht ein. Die Einstellung gilt für alle definierten TCPs.

Weitere Informationen zur maximal zulässigen Nutzlast finden Sie im Hardware-Installationshandbuch.

13.6.6 Schwerpunkt

Der Schwerpunkt des Werkzeugs kann optional unter Verwendung der Felder cx, cy und cz angegeben werden. Der Werkzeug-Mittelpunkt wird als der Schwerpunkt angenommen, solange nichts anderes angegeben wurde. Die Einstellung gilt für alle definierten TCPs.

WARNUNG:

Vergewissern Sie sich, dass Sie die korrekten Installationseinstellungen verwenden. Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.

13.7 Installation \rightarrow Montage

<u> I</u> 🖉 Datei	14:08:06	cccc 🕜
Programm Installation	Bewegen E/A Protokoll	
TCP-Konfiguration	Roboterbefestigung und Winke	el
Montage		J
E/A-Einstellung		-
🔁 Sicherheit		त्न
Variablen		1
MODBUS-Client		Neigung
Funktionen		45°
Fließband-Tracking		
Ethernet/IP		T
PROFINET		0,0
Standardprogramm		
Laden/Speichern		45°
	Roboterfußmontage drehen 🔶 45° 🔶 0,0° 🗭	45° 🔿

Hier kann die Montage des Roboterarms vorgegeben werden. Dies dient zwei Zwecken:

1. Die richtige Darstellung des Roboterarms auf dem Bildschirm.

2. Der Controller wird über die Richtung der Gravitationskraft informiert.

Der Controller verwendet ein erweitertes Dynamikmodell, um dem Roboterarm fließende und genaue Bewegungen zu verleihen und den Roboterarm im *Freedrive*-Modus zu belassen. Aus diesem Grund ist es sehr wichtig, dass die Ausrichtung des Roboterarms korrekt eingestellt ist.

WARNUNG:

Wenn die Einstellungen des Roboterarms nicht richtig durchgeführt wurden, kann dies zu häufigen Schutzstopps führen und/oder eine Bewegung des Roboterarms beim Drücken der Freedrive-Taste zur Folge haben.

Standardmäßig wird der Roboterarm auf einem flachen Tisch oder Untergrund montiert, wobei keine Änderungen in diesem Bildschirm erforderlich werden. Wenn der Roboterarm jedoch *an der Decke, an der Wand* oder in einem Winkel montiert wird, muss dies mithilfe der Tasten angepasst werden. Die Schaltflächen auf der rechten Seite des Bildschirms dienen der Einstellung des Winkels der Roboterarmmontage. Die drei Schaltflächen auf der rechten oberen Seite stellen den Winkel für *Decke* (180°), *Wand* (90°), *Boden* (0°). Die Schaltflächen Neigen können zur Einstellung eines willkürlichen Winkels eingesetzt werden. Die Schaltflächen im unteren Teil des Bildschirms werden zur Drehung der Montage des Roboterarms eingesetzt, um der eigentlichen Montage zu entsprechen.

WARNUNG:

Vergewissern Sie sich, dass Sie die korrekten Installationseinstellungen verwenden. Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.

13.8 Installation \rightarrow E/A-Einstellung

🜒 Datei						14	:08	:06	сссс	0
Programm Installation	n Bewegen E/A		Protokoll							
TCP-Konfiguration	Ei	in	gang/	Ausg	а	ng Einste	llı	ung		
Montage	Namen eingeben					Namen ausgeber	1			_
E/A-Einstellung	digital_in[0]	;	<default></default>	Î		digital_out[0]	1	<default< th=""><th>></th><th>-</th></default<>	>	-
Sicherheit	digital_in[1] digital_in[2]	:	<default></default>			digital_out[2]		<default< th=""><th>></th><th></th></default<>	>	
Variablen	digital_in[3]	:	<default></default>	_		digital_out[3]	:	<default< th=""><th>></th><th></th></default<>	>	
MODBUS-Client	digital_in[4] digital_in[5]	:	<default></default>			digital_out[4] digital_out[5]		<default <default< th=""><th>></th><th>=</th></default<></default 	>	=
Funktionen	digital_in[6]	;	<default></default>			digital_out[6]	:	<default< th=""><th>></th><th></th></default<>	>	
Fließband-Tracking	digital_in[7]	;	<default></default>	μ		digital_out[7]	:	<default< th=""><th>></th><th></th></default<>	>	
	tool_in[0]	1	<default></default>			tool_out[0]	-	<detault< th=""><th>></th><th></th></detault<>	>	
Ethernet/IP	toot_in(i)	:	<default></default>			tool_out[1]	:	<default< th=""><th>></th><th></th></default<>	>	
PROFINET	analog_in[1]	-	<default></default>			analog_out[1]	-	<default< th=""><th>></th><th></th></default<>	>	
Standardprogramm	analog_in[2]	:	<default></default>	-		config_out[0]	;	<default< th=""><th>></th><th>-</th></default<>	>	-
Laden/Speichern	Umbenennen nach		1 6 11		С	learname				

Eingangs- und Ausgangssignalen können Namen gegeben werden. So ist es bei der Arbeit mit dem Roboter einfacher zu erkennen, wofür das Signal verwendet wird. Wählen Sie einen E/A, indem Sie auf ihn klicken, und legen Sie den Namen über die Bildschirmtastatur fest. Sie können den Namen zurücksetzen, indem Sie nur Leerzeichen eingeben.

Die acht Standard-Digitaleingänge und die beiden Werkzeug-Eingänge sind konfigurierbar, um eine Maßnahme auszulösen. Verfügbare Aktionen umfassen die Möglichkeit, das aktuelle Programm mit steigender Flanke zu starten, stoppen und anzuhalten oder den Freedrive Modus bei hohem/niedrigen Eingangssignal einzuleiten/zu verlassen (wie die Freedrive Taste auf der Rückseite des Teach-Pendant).

Das Standardverhalten von Ausgängen ist, dass ihre Werte erhalten bleiben, auch nachdem ein Programm nicht mehr läuft. Es ist auch möglich, eine Ausgabe mit einem Standardwert zu konfigurieren, der angewendet wird, wenn kein Programm läuft.

Die acht Standard-Digitalausgänge und die beiden Werkzeug-Ausgänge sind darüber hinaus konfigurierbar, um festzustellen, ob ein Programm gerade ausgeführt wird, d.h. dass der Ausgang hoch ist, wenn ein Programm ausgeführt wird und ansonsten aber niedrig ist.

Es kann zu guter Letzt vorgegeben werden, ob ein Ausgang durch Programmierer oder Bediener über den Tab ",E/A" gesteuert (entweder) oder ob der Ausgangswert nur durch Roboterprogramme geändert werden kann.

13.9 Installation \rightarrow Sicherheit

Siehe Kapitel 10.

13.10 Installation \rightarrow Variablen

<u> (</u> Datei			14:08:07	cccc 🕜
Programm Installation	Bewegen E/A Protokoll			
TCP-Konfiguration	Installationsvariablen			
Montage				
E/A-Einstellung	Variable 🔺		Wert	
🔁 Sicherheit				
Variablen				
MODBUS-Client				
Funktionen				
Fließband-Tracking				
Ethernet/IP				
PROFINET				
Standardprogramm				
Laden/Speichern				
	Neu erstellen	Wert bearbeiten	Löschen	

Hier erstellte Variablen werden Installationsvariablen genannt und können wie normale Programmvariablen verwendet werden. Installationsvariablen sind speziell, da sie ihren Wert beibehalten, selbst wenn ein Programm gestoppt und dann wieder gestartet wird und wenn der Roboterarm/der Controller aus- und dann wieder eingeschaltet wird. Ihre Namen und Werte werden mit der Installation gespeichert. Deshalb ist es möglich, die gleiche Variable in mehreren Programmen zu verwenden.

Neue Installationsvariable erstellen			
	crocenen		
Name	Wert		
i_Var_1 =			
		OK Abbrechen	

Durch Betätigen von Neu erstellen wird ein Feld mit einem Namensvorschlag für die neue Variable geöffnet. Der Name kann geändert bzw. sein Wert eingegeben werden, indem das Textfeld berührt wird. Die Taste OK kann nur geklickt werden, wenn der neue Name nicht bereits in dieser Installation verwendet wird.

Es ist möglich, den Wert einer Installationsvariablen zu ändern, indem die Variable in der Liste markiert und dann auf Wert bearbeiten geklickt wird.

Wählen Sie zum Löschen einer Variablen diese aus der Liste aus, und klicken Sie auf Löschen.

Nach dem Konfigurieren der Installationsvariablen muss die Installation selbst gespeichert werden, um diese Konfiguration beizubehalten. Siehe 13.5. Die Installationsvariablen und deren Werte werden etwa alle 10 Minuten automatisch gespeichert.

Wenn ein Programm oder eine Installation geladen wird und eine oder mehrere der Programmvariablen denselben Namen wie die Installationsvariablen haben, werden dem Benutzer zwei Optionen zur Behebung dieses Problems angeboten: er kann entweder die Installationsvariablen desselben Namens anstelle der Programmvariable verwenden oder die in Konflikt zueinander stehenden Variablen automatisch umbenennen lassen.

13.11 Installation \rightarrow MODBUS-Client-E/A-Einstellung

<u> (</u> Datei	14:08:08	cccc 🕜
Programm Installation	Bewegen E/A Protokoll	
TCP-Konfiguration	MODBUS-Client-E/A-Einstellung	5
Montage	-10.0.0.1	
E/A-Einstellung	IP: 10.0.0.1	
🔁 Sicherheit	Digitaler Ausg 🔽 0 MODBUS	
Variablen		수
MODBUS-Client	10.0.0.2	
Funktionen	IP: 10.0.0.2	
Fließband-Tracking	0 Registerausgang - 0 MODBUS	
Ethernet/IP	Digitaler Einga V 0 MODBUS	
PROFINET		
Standardprogramm		
🕞 Laden/Speichern	Erweiterte Optionen anzeigen	+

Hier können die Signale des MODBUS-Client (Master) eingestellt werden. Verbindungen zu MODBUS-Servern (oder Slaves) auf angegebenen IP-Adressen können mit Eingangs-/Ausgangssignalen (Register oder digital) erstellt werden. Jedes Signal hat einen einmaligen Namen, damit es in Programmen verwendet werden kann.

Aktualisieren

Drücken Sie auf diese Schaltfläche, um alle MODBUS-Verbindungen zu aktualisieren.

Einheit hinzufügen

Drücken Sie auf diese Schaltfläche, um eine neue MODBUS-Einheit hinzuzufügen.

Einheit löschen

Drücken Sie auf diese Schaltfläche, um die MODBUS-Einheit und alle Signale dieser Einheit zu löschen.

Einstellung IP-Adresse Einheit

Hier wird die IP-Adresse der MODBUS-Einheit angezeigt. Drücken Sie auf die Schaltfläche, um diese zu ändern.

Signal hinzufügen

Drücken Sie auf diese Schaltfläche, um der entsprechenden MODBUS-Einheit ein Signal hinzuzufügen.

Signal löschen

Drücken Sie auf diese Schaltfläche, um ein MODBUS-Signal der entsprechenden MODBUS-Einheit zu löschen.

Signaltyp einstellen

Verwenden Sie dieses Auswahlmenü, um den Signaltyp auszuwählen. Die folgenden Typen stehen zur Verfügung:

- **Digitaleingang:** Ein digitaler Eingang ist eine Ein-Bit-Menge, die von der MODBUS-Einheit aus dem Coil abgelesen wird, die im Adressfeld des Signals angegeben ist. Funktionscode 0x02 (diskrete Ausgänge lesen) wird eingesetzt.
- **Digitalausgang:** Ein digitaler Ausgang (Coil) ist eine Ein-Bit-Menge, die auf high oder low eingestellt werden kann. Bevor der Wert dieses Ausgangs durch den Benutzer eingestellt wurde, wird der Wert von der dezentralen MODBUS-Einheit abgelesen. Das bedeutet, dass der Funktionscode 0x01 (Read coils) verwendet wird. Wenn der Ausgang entweder durch ein Roboterprogramm oder durch Betätigung der Schaltfläche "Signalwert bestimmen" festgelegt wurde, wird ab diesem Zeitpunkt der Funktionscode 0x05 (write single coil) eingesetzt.
- **Registereingang:** Ein Registereingang ist eine 16-Bit-Menge, die von der Adresse abgelesen wird, die im Adressfeld angegeben ist. Der Funktionscode 0x04 (Read input registers) wird eingesetzt.
- **Registerausgang:** Ein Registerausgang ist eine 16-Bit-Menge, die durch den Benutzer eingestellt werden kann. Bevor der Wert dieses Registers eingestellt wurde, wird der Wert von der dezentralen MODBUS-Einheit abgelesen. Das bedeutet, dass der Funktionscode 0x03 (Haltread holding registers) verwendet wird. Wenn der Ausgang entweder durch ein Roboterprogramm oder durch

Betätigung der Schaltfläche "Signalwert bestimmen" festgelegt wurde, wird der Funktionscode 0x06 (Einzelnes Register schreiben) eingesetzt, um den Wert auf der dezentralen MODBUS-Einheit festzulegen.

Signaladresse einstellen

Dieses Feld zeigt die Adresse des dezentralen MODBUS-Servers. Verwenden Sie die Bildschirmtastatur, um eine andere Adresse auszuwählen. Gültige Adressen hängen von Hersteller und Konfiguration der dezentralen MODBUS-Einheit ab.

Signalname einstellen

Durch Verwendung der Bildschirmtastatur kann der Benutzer das Signal benennen. Dieser Name wird verwendet, wenn das Signal in Programmen eingesetzt wird.

Signalwert

Hier wird der Istwert des Signals angezeigt. Bei Registersignalen wird der Wert als vorzeichenlose ganze Zahl ausgedrückt. Bei Ausgangssignalen kann der gewünschte Signalwert mit der Schaltfläche eingestellt werden. Für den Registerausgang muss der an die Einheit zu schreibende Wert als vorzeichenlose ganze Zahl bereitgestellt werden.

Status Signalkonnektivität

Dieses Symbol zeigt an, ob das Signal korrekt gelesen/geschrieben (grün) werden kann oder ob die Einheit unerwartet antwortet oder nicht erreichbar ist (grau). Wird eine MODBUS-Ausnahmeantwort empfangen, wird der Antwortcode angezeigt. Die MODBUS-TCP-Ausnahmeantworten lauten wie folgt:

- E1 UNZULÄSSIGE FUNKTION (0x01): Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave).
- E2 UNZULÄSSIGE DATENADRESSE (0x02): Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave). Prüfen Sie, ob die eingegebenen Signaladressen mit der Einstellung des dezentralen MODBUS-Servers übereinstimmen.
- E3 UNZULÄSSIGER DATENWERT (0x03): Ein im Abfragedatenfeld enthaltener Wert ist für den Server (oder Slave) unzulässig. Prüfen Sie, ob der eingegebene Signalwert für die angegebenen Adressen auf dem dezentralen MODBUS-Server gültig ist.
- E4 FEHLER IM SLAVE-GERÄT (0x04): Ein nicht wiederherstellbarer Fehler ist aufgetreten, während der Server (oder Slave) versucht hat, die angeforderte Aktion auszuführen.
- E5 BESTÄTIGEN (0x05): Spezielle Verwendung in Verbindung mit Programmierbefehlen, die an die dezentrale MODBUS-Einheit gesendet werden.
- E6 SLAVE-GERÄT MOMENTAN NICHT VERFÜGBAR (0x06): Spezielle Verwendung in Verbindung mit Programmierbefehlen, die an die dezentrale MODBUS-Einheit gesendet werden; der Slave (Server) kann im Moment nicht antworten.

Erweiterte Optionen anzeigen

Dieses Kontrollkästchen zeigt die erweiterten Optionen für jedes Signal bzw. blendet diese aus.

Erweiterte Optionen

- Update-Häufigkeit: Mit diesem Menü kann die Aktualisierungsfrequenz des Signals geändert werden. Dies gilt für die Frequenz, mit der Anfragen an das dezentrale MODBUS-Steuergerät geschickt werden, um den Signalwert entweder zu lesen oder zu schreiben.
- Slave-Adresse: Dieses Textfeld kann verwendet werden, um eine spezifische Slave-Adresse für Anfragen im Zusammenhang mit einem spezifischen Signal einzustellen. Der Wert muss im Bereich von 0-255 liegen. Der Standardwert ist 255. Wenn Sie diesen Wert ändern, wird empfohlen, das Handbuch des dezentralen MODUS-Geräts hinzuzuziehen, um seine Funktion zu prüfen, wenn die Slave-Adresse geändert wird.

13.12 Installation \rightarrow Funktionen

Kunden, die Industrieroboter kaufen, möchten im Allgemeinen in der Lage sein, einen Roboterarm zu steuern und zu betätigen und den Roboterarm in Relation zu verschiedenen Objekten und Grenzen in seiner Umgebung zu programmieren, wie beispielsweise Maschinen, Objekte oder Formlinge, Aufsätze, Conveyer, Paletten oder Sichtsysteme. Traditionell erfolgt dies durch die Definition von "Rahmen" (Koordinatensysteme), die einen Bezug zwischen dem internen Koordinatensystem des Roboterarms (das grundlegende Koordinatensystem) und dem Koordinatensystem des relevanten Objektes herstellen. Ein Bezug kann sowohl zu "Werkzeugkoordinaten" als auch zu den"Basiskoordinaten" hergestellt werden.

Ein Problem bei solchen Rahmen ist, dass ein bestimmtes Niveau an mathematischen Kenntnissen erforderlich ist, um solche Koordinatensysteme zu definieren, und dass dies mit erheblichem Zeitaufwand verbunden ist, selbst für einen Fachmann im Bereich Roboterprogrammierung und -installation. Oftmals umfasst diese Aufgabe die Berechnung von 4x4-Matritzen. Insbesondere ist die Darstellung der Ausrichtung für eine Person schwierig, der es an der Erfahrung fehlt, die zum Verstehen dieses Problems erforderlich ist.

Häufig seitens der Kunden gestellte Fragen lauten beispielsweise:

- Ist es möglich, den Roboter um 4 cm vom Greifer meiner computergestützten, numerisch gesteuerten (CNC) Maschine wegzubewegen?
- Ist es möglich, das Werkzeug des Roboters um 45 Grad (bezogen auf den Tisch) zu drehen?
- Können wir den Roboterarm vertikal nach unten mit dem Objekt bewegen, das Objekt loslassen und den Roboterarm anschließend wieder vertikal nach oben bewegen?

Die Bedeutung dieser und ähnlicher Fragen ist für einen durchschnittlichen Kunden sehr wichtig, wenn er einen Roboter beispielsweise an verschiedenen Stationen einer Fertigungsanlage einsetzen will, und es erscheint einem Kunden mitunter störend oder zumindest unverständlich, wenn man diesem erklärt, dass es auf solch *wichtigen* Fragen nicht immer eine einfache Antwort gibt. Es gibt mehrere gute Gründe dafür und um diese Probleme anzugehen, hat Universal Robots einzigartige und einfache Wege entwickelt, mit denen ein Kunde den Standort mehrerer Objekte in Relation zum Roboterarm vorgeben kann. Mit wenigen Schritten ist es daher möglich, genau das auszuführen, was mit den oben stehenden Fragen angesprochen wurde.

Umbenenner	1
	Diese Schaltfläche ermöglicht die Umbenennung einer Funktion.
Löschen	
	Diese Schaltfläche löscht die ausgewählte Funktion und alle Unterfunktionen, so- fern vorhanden.
Achsen zeige	en
	Wählen Sie, ob die Koordinatenachsen der ausgewählten Funktion in der 3D-Grafik sichtbar sein sollen. Die Auswahl gilt für diesen Bildschirm und den Move-Bildschirm
Tippbetrieb	

Wählen Sie, ob ein Tippbetrieb für die gewählte Funktion möglich sein soll. Dadurch wird festgelegt, ob die Funktion im Funktionsmenü auf dem Move-Bildschirm angezeigt wird.

Variable

Wählen Sie, ob das ausgewählte Merkmal als Variable eingesetzt werden kann. Wenn diese Option gewählt ist, wird eine nach dem Namen des Merkmals benannte Variable, gefolgt von "_var" bei der Bearbeitung von Roboterprogrammen verfügbar. Dieser Variablen kann ein neuer Wert in einem Programm zugewiesen werden, der dann zur Steuerung von Wegpunkten eingesetzt werden kann, die vom Wert des Merkmals abhängig sind.

Position einstellen oder ändern

Verwenden Sie diese Schaltfläche, um die ausgewählte Funktion einzustellen oder zu ändern. Der Move-Bildschirm erscheint und eine neue Position der Funktion kann eingestellt werden.

Roboter auf Funktion bewegen

Wenn Sie diese Schaltfläche betätigen, bewegt sich der Roboterarm in Richtung der ausgewählten Funktion. Am Ende dieser Bewegung stimmen die Koordinatensysteme der Funktion und des TCP überein, ausgenommen einer Drehung um 180 Grad um die x-Achse.

Punkt hinzufügen

Betätigen Sie diese Schaltfläche, um eine Punktfunktion zur Installation hinzuzufügen. Die Position einer Punktfunktion wird als die Position des TCP dieses Punktes definiert. Die Ausrichtung der Punktfunktion ist dieselbe wie die TCP-Ausrichtung, mit der Ausnahme, dass das Koordinatensystem der Funktion um 180 Grad um seine x-Achse gedreht ist. Dadurch ist die z-Achse der Punktfunktion in die Gegenrichtung zur z-Achse des TCP an diesem Punkt ausgerichtet.

🜒 Datei		1	.4:08:21 CCCC 🕜
Programm Installation	n Bewegen E/A Protok	oll	
TCP-Konfiguration	Punkt 1 Umbenen	nen	Löschen
Montage	_		
E/A-Einstellung			
🔁 Sicherheit			
Variablen			
MODBUS-Client		•	
Funktionen			
– Fuß – Werkzeug – X Punkt 1	_		
- Fließband-Tracking			
Ethernet/IP	↓		
PROFINET			
Standardprogramm			
肩 Laden/Speichern	🗹 Achsen zeigen	Roboter hierber bewegen	Diesen Punkt ändern
	✓ Tippbetrieb	novoter memer vewegen	Diesen Funkt andern
	Variable		

Linie hinzufügen

Betätigen Sie diese Schaltfläche, um eine Linienfunktion zur Installation hinzuzufügen. Eine Linie ist als eine Achse zwischen zwei Punktfunktionen definiert. Diese Achse ist vom ersten zum zweiten Punkt gerichtet und beschreibt die y-Achse des Koordinatensystems der Linie. Die z-Achse wird durch die Projektion der z-Achse des ersten Unterpunktes auf die senkrecht auf der Linie stehende Ebene definiert. Die Position des Koordinatensystems der Linie ist dieselbe wie die Position für den ersten Unterpunkt.

🖉 🖉 Datei		14:08:32	cccc 🕜
Programm Installation	Bewegen E/A Protokoll		
TCP-Konfiguration	Zeile 1 Umbenennen		Löschen
Montage			
E/A-Einstellung			
🕎 Sicherheit			
Variablen			
MODBUS-Client			
Funktionen			
Fuß Werkzeug Y Zeile_1 X Punkt_1 X Punkt_2			
Fließband-Tracking			
Ethernet/IP			
PROFINET			
Standardprogramm	🗹 Achsen zeigen	Roboter hierh	er bewegen
🔚 Laden/Speichern	✓ Tippbetrieb		
	Variable		
Ebene hinzufügen

Betätigen Sie diese Schaltfläche, um eine Ebenenfunktion zur Installation hinzuzufügen. Eine Ebene ist durch drei in ihr befindliche Punkte definiert. Die Position des Koordinatensystems ist dieselbe wie die Position für den ersten Punkt. Die z-Achse ist die Ebenennormale und die y-Achse verläuft vom ersten Punkt in Richtung des zweiten Punktes. Die positive Richtung der z-Achse ist so eingestellt, dass der Winkel zwischen der z-Achse der Ebene und der z-Achse des ersten Punktes kleiner als 180 Grad ist.

13.13 Einrichtung der Fließbandverfolgung

Wird ein Fließband verwendet, kann der Roboter so konfiguriert werden, dass er dessen Bewegung verfolgt. Die Fließbandverfolgung-Einrichtung bietet Robotereinstelloptionen für den Betrieb mit absoluten und relativen Encodern sowie einem linearen oder kreisförmigen Fließband.

Fließband-Parameter

Inkrementalgeber können an die digitalen Eingänge 0 bis 3 angeschlossen werden. Das Decodieren von digitalen Signalen läuft mit 40 kHz. Mit einem Quadratur-Encoder (erfordert zwei Eingänge) ist der Roboter in der Lage, die Geschwindigkeit sowie Richtung des Fließbands zu bestimmen. Ist die Richtung des Fließbands konstant, kann ein einzelner Eingang dazu verwendet werden, über die Erkennung von einer Steigende, Fallende oder Steigende und fallende Signalflanke, die Geschwindigkeit des Fließbands zu bestimmen. Absolutwertgeber können verwendet werden, wenn sie über ein MODBUS-Signal verbunden sind. Dies macht eine Vorkonfigurierung im Abschnitt 13.11 des digitalen MODBUS-Eingangsregisters erforderlich

Linear-Fließband

Wenn ein linearer Fließband ausgewählt wurde, ist eine Linienfunktion zu konfigurieren, die parallel zum Fließband verläuft. Die Linienfunktion sollte parallel zu der Richtung des Fließbands verlaufen und es sollte ein großer Abstand zwischen den beiden Punkten bestehen, die die Linienfunktion bestimmen. Es wird empfohlen, die Linienfunktion so zu konfigurieren, dass Sie das Werkzeug beim Anlernen fest gegen die Seite des Fließbands stemmen.

Das Feld Inkremente pro Meter wird als die Anzahl der Inkremente verwendet, die der Encoder während eines Meters Fahrstrecke des Fließbands erzeugt.

Inkremente pro Meter = $\frac{\text{Inkremente pro Umdrehung des Encoder}}{2\pi \cdot \text{Radius Encoderscheibe[m]}}$ (13.1)

Kreisförmiger Fließband

Beim Tracking eines kreisförmigen Fließbands ist der Mittelpunkt des Fließbands (Kreis) festzulegen. Der Wert Inkremente pro Meter wird als die Anzahl der Inkremente verwendet, die der Encoder während einer vollen Umdrehung des Fließbands erzeugt.

13.14 Installation \rightarrow Standardprogramm

<u> (</u> Datei	14:08:10 CCCC 🕜					
Programm Installation	n Bewegen E/A Protokoll					
TCP-Konfiguration	Standardprogramm einstellen					
Montage						
E/A-Einstellung	Standardprogrammdatei					
Sicherheit	Automatisches Laden eines Standardprogramms, wenn der Roboter eingeschaltet ist					
	🔄 Standardprogramm laden:					
Variablen	<no program="" selected=""></no>					
MODBUS-Client						
Funktionen	Standardprogramm wählen					
Fließband-Tracking	▲ Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der ▲ Roboter bereits beim Einschalten bewegen!					
Ethernet/ID	Autostarten Sie das Standardprogramm in der Registerkarte Ausführen					
PROFINET	Ein Flanke zu Low 💌					
Standardprogramm	Auto-Initialisieren					
Laden/Speichern	Automatisches Initialisieren des Roboters, wenn der Hauptstrom eingeschaltet wird					
	🛦 Der Roboter kann sich durch das Bremsenfreigabeverfahrens bewegen!					
	🗌 Automatische Bremsenfreigabe des Roboters					
	Ein <di.input> <</di.input>					

Dieser Bildschirm enthält Einstellungen für das automatische Laden und Starten eines Standardprogramms und für die Auto-Initialisierung des Roboterarms beim Einschalten.

WARNUNG:

Wenn die drei Optionen Auto-Laden, Auto-Start und Auto-Initialisieren aktiviert sind, wird der Roboter mit der Ausführung des ausgewählten Programms beginnen, sobald das Steuergerät eingeschaltet wird.

13.14.1 Laden eines Standardprogramms

Ein Standardprogramm kann ausgewählt werden, das geladen werden soll, wenn der Controller eingeschaltet wird. Darüber hinaus wird das Standardprogramm auch automatisch geladen, wenn der Bildschirm *Programm ausführen* (siehe 11.4) geöffnet wird und kein Programm geladen ist.

13.14.2 Starten eines Standardprogramms

Das Standardprogramm kann auf dem Bildschirm *Programm ausführen* automatisch gestartet werden. Wenn das Standardprogramm geladen wird und der spezifizierte Flankenübergang eines externen Eingangssignals erkannt wird, wird das Programm automatisch gestartet.

Bitte beachten Sie, dass beim Start die Ebene des Stromeingangssignals nicht definiert ist und das Programm sofort gestartet wird, sobald ein Übergang gewählt wurde, der der Signalebene beim Start entspricht. Darüber hinaus wird die Auto-Startfunktion beim Verlassen des Bildschirms *Programm ausführen* oder beim Drücken der Stopptaste im *Dashboard* solange deaktiviert, bis die Taste "Ausführen" noch einmal gedrückt wird.

13.14.3 Auto-Initialisierung

Der Roboterarm kann automatisch initialisiert werden, zum Beispiel wenn das Steuergerät eingeschaltet ist. Auf dem spezifizierten Flankenübergang eines externen Eingangssignals wird der Roboterarm vollständig initialisiert, unabhängig vom sichtbaren Bildschirm.

Der letzte Schritt der Initialisierung ist die *Bremsenfreigabe*. Wenn der Roboter die Bremsen freigibt, bewegt er sich leicht und gibt ein Geräusch von sich. Darüber hinaus können die Bremsen nicht automatisch freigegeben werden, wenn die konfigurierte Montage nicht der erkannten Montage basierend auf den Sensordaten entspricht. In diesem Fall muss der Roboter auf dem Initialisierungsbildschirm manuell initialisiert werden (siehe 11.5).

Bitte beachten Sie, dass beim Start die Ebene des Stromeingangssignals nicht definiert ist und der Roboterarm sofort initialisiert wird, sobald ein Übergang gewählt wurde, der der Signalebene beim Start entspricht.

13.15 "Protokoll"-Tab

🔕 Datei							14:08:48	CCCC	0
Programm In	stallation	Bewegen	E/A	Protokoll					
Lesungen		Gelenkbelas	tung						
Regler Temp.	0,0 °C	Fuß		ОК			0,0 A 40,0 °C	0,0 V	
Hauptspannung	48,0 V	Schulter		ОК			0,2A 40,0 °C	0,0 V	
Roboter Leistung	18 W	Ellbogen		ОК			1,3 A 40,0 °C	0,0 ∨	
Roboterstrom	2,5 A	Handgele	enk 1	ОК			0, 2A 40,0 °C	0,0 ∨	
E/A Strom	0 A	Handgele	enk 2	ОК			0,0 A 40,0 °C	0,0 ∨	
Werkzeugstrom	0 mA	Handgele	enk 3	ОК			0,0 A 40,0 °C	0,0 V	
2016-05-25 14:	:08:48						8	Löschen	
A 2016-05-25 14:0	07:01.000 R	obotInterface	C102	A0: Realer F	loboter nicht	angeschlosse	n – Roboter-	Simulation	
▲ 2016-05-25 14:0	7∶01.000 R	obotInterface	c102	A0: Realer F	oboter nicht	angeschlosser	a - Roboter-	Simulation	
									•

Zustand des Roboters Die obere Hälfte des Bildschirms zeigt den Zustand des Roboterarms und des Controllers an. Der linke Teil zeigt Informationen im Zusammenhang mit dem Controller des Roboters, während der linke Teil Informationen zu jedem Robotergelenk anzeigt. Jedes Robotergelenk zeigt Informationen über die Motortemperatur und zur Elektronik, zur Belastung des Gelenkes und zur Spannung am Gelenk.

Roboterprotokoll In der unteren Hälfte des Bildschirms werden Protokollmeldungen angezeigt. Die erste Spalte kategorisiert den Schweregrad des Protokolleintrags. Die zweite Spalte zeigt die Eingangszeit einer Meldung. Die folgende Spalte zeigt den Sender einer Meldung. Die letzte Spalte zeigt die eigentliche Meldung. Meldungen können durch Auswahl der Schaltflächen, die zu dem Schweregrad gehören, gefiltert werden. Die Abbildung oben zeigt nun, dass Fehler angezeigt werden, während Informations- und Warnmeldungen gefiltert werden. Einige Protokollmeldungen sind darauf ausgelegt, weitere Informationen zu bieten, auf die durch Auswahl des Protokolleintrags zugegriffen werden kann.

13.16 "Laden" - Anzeige

Mithilfe dieses Bildschirms wählen Sie, welches Programm Sie laden wollen. Es gibt zwei Versionen dieses Bildschirms: eine, die verwendet wird, wenn Sie ein Programm laden und ausführen möchten und eine, die verwendet wird, wenn Sie ein Programm bearbeiten möchten.

HINWEIS:

Das Ausführen eines Programms von einem USB-Laufwerk aus wird nicht empfohlen. Um ein Programm auszuführen, das auf einem USB-Laufwerk gespeichert ist, laden Sie es zuerst und speichern Sie es dann im lokalen Ordner Programme mithilfe der Option Speichern als... im Datei-Menü.

Der Hauptunterschied liegt darin, welche Aktionen dem Benutzer zur Verfügung stehen. Im Grundbildschirm "Laden" kann der Benutzer lediglich auf Dateien zugreifen, sie jedoch nicht bearbeiten oder löschen. Weiterhin kann der Benutzer die Verzeichnisstruktur, die vom Ordner Programme ausgeht, nicht verlassen. Der Benutzer kann in ein Unterverzeichnis wechseln, aber er kann nicht über den Ordner Programme hinaus gelangen.

Deshalb sind alle Programme in den Ordner "Programme" und/oder in Unterordner unter dem Ordner "Programme" zu speichern.

Layout des Bildschirmes

	Programm laden	0
Aktuelles Verzeichnis:	/root/programs	▼ ▲ ☆
ABCDE.urp		
StartABCDE.urp		
Dateiname:		
Filter:	Universal Robots Programmdateien	•
	[Öffnen Abbrechen

Die Abbildung zeigt den eigentlichen Bildschirm "Laden". Er besteht aus den folgenden wichtigen Bereichen und Schaltflächen:

Pfadhistorie Die Pfadhistorie zeigt eine Liste der Pfade, die zum aktuellen Ort führen. Das bedeutet, dass alle übergeordneten Verzeichnisse bis zum Root-Verzeichnis des Computers angezeigt werden. Sie werden hier feststellen, dass Sie vielleicht nicht auf alle Verzeichnisse über dem Ordner "Programme" zugreifen können.

Wenn in der Liste ein Ordnername ausgewählt wird, wechselt der Ladedialog zu diesem Verzeichnis und zeigt es im Dateiauswahlbereich 13.16 an.

Dateiauswahlbereich In diesem Bereich des Dialogfensters werden die Inhalte des eigentlichen Bereiches angezeigt. Es gibt dem Benutzer die Möglichkeit, eine Datei durch einfachen Klick auf ihren Namen auszuwählen oder eine Datei durch Doppelklick auf ihren Namen zu öffnen.

Verzeichnisse werden durch längeres Drücken von ungefähr 0,5 Sek. ausgewählt. Zugriff auf einen Ordner und seinen Inhalt erfolgt durch Einzelklick.

Dateifilter Durch die Verwendung des Dateifilters kann man die angezeigten Dateien so begrenzen, dass nur die gewünschten Dateitypen angezeigt werden. Durch Auswahl von "Backup-Dateien" erscheint die Anzeige des Dateiauswahlbereichs der neuesten 10 gespeicherten Versionen der einzelnen Programme, wobei .old0 die neueste und .old9 die älteste ist.

Dateifeld Hier wird die aktuell ausgewählte Datei angezeigt. Der Benutzer hat die Option, den Dateinamen per Hand einzugeben, indem er auf das Tastatursymbol rechts auf dem Feld klickt. Dadurch wird eine Bildschirmtastatur angezeigt, mit der man den Dateinamen direkt auf dem Bildschirm eingeben kann.

Schaltfläche "Öffnen" Durch Anklicken der Schaltfläche "Öffnen" öffnet sich die aktuell ausgewählte Datei und das System kehrt zum vorhergehenden Bildschirm zurück.

Schaltfläche "Abbrechen" Durch Anklicken der Schaltfläche "Abbrechen" wird der aktuelle Ladevorgang abgebrochen und der Bildschirm wechselt auf die vorhergehende Ansicht.

Aktionsschaltflächen Eine Reihe von Schaltflächen bietet dem Benutzer die Möglichkeit, die Handlungen vorzunehmen, die in der Regel durch Rechtsklick auf einen Dateinamen in einem herkömmlichen Dateidialog verfügbar sind. Zusätzlich gibt es die Möglichkeit zum Wechsel nach oben in die Verzeichnisstruktur und direkt in den Ordner "Programme".

- Parent: Wechsel nach oben in der Verzeichnisstruktur. Die Schaltfläche ist in zwei Fällen nicht aktiviert: wenn das aktuelle Verzeichnis das oberste Verzeichnis ist oder wenn der Bildschirm im begrenzten Modus läuft und das aktuelle Verzeichnis der Ordner "Programm" ist.
- Gehe zu Ordner "Programme": Zum Ausgangsbildschirm zurück
- Aktionen: Aktionen wie beispielsweise Verzeichnis erstellen, Datei löschen usw.

13.17 "Aktivbetrieb"Tab

💽 Datei	14:07:22 CCCC	\bigcirc
Laufen Bewegen E/A Protokoll		
UNIV ROBO	ERSAL TS	
Va	ariablen	_
Programm: ABCDE		
Status: Gestoppt		
Zeit: 0000d00h00m51.928s		

Dieser Tab bietet einen sehr einfachen Weg zur Bedienung des Roboterarms und des Steuergeräts, mit so wenig Schaltflächen und Optionen wie möglich. Dies kann sinnvoll mit einem Passwort kombiniert werden, das den Programmierteil von PolyScope schützt (siehe 15.3), um den Roboter zu einem Werkzeug zu machen, das ausschließlich vorher geschriebene Programme ausführt.

Des Weiteren kann in diesem Tab, basierend auf dem Flankenübergang eines externen Eingangssignals, ein Standardprogramm automatisch geladen und gestartet werden (siehe 13.14). Die Kombination von automatischem Laden und Starten eines Standardprogramms und der Auto-Initialisierung beim Einschalten kann beispielsweise verwendet werden, um den Roboterarm in andere Maschinen zu integrieren.

14.1 Neues Programm

<u> (</u> Datei			14:07:25	cccc 🕜
Programm	Installation Bew	egen E/A Protokoll		
		Neues Programm		
	Aus Datei laden			
		Programm laden		
	Vorlage verwende	n		
		Einlegen und Entnehmen		
		Neues Programm		

Ein neues Roboterprogramm kann entweder von einer *Vorlage* oder von einem vorhandenen (gespeicherten) Roboterprogramm aus gestartet werden. Eine *Vorlage* kann die Gesamtprogrammstruktur bieten, sodass nur die Details des Programms ausgefüllt werden müssen.

14.2 "Programm"-Tab

Der "Programm"-Tab zeigt das aktuell bearbeitete Programm.

14.2.1 Programmstruktur

Die *Programmstruktur* auf der linken Bildschirmseite zeigt das Programm als Auflistung von Befehlen, während der Bereich auf der rechten Bildschirmseite Informationen im Zusammenhang mit dem aktuellen Befehl anzeigt. Der aktuelle Befehl wird durch Anklicken der Befehlsliste bzw. über die Schaltflächen Zurück und Weiter unten rechts auf dem Bildschirm ausgewählt. Befehle können mithilfe des Tab Struktur eingegeben oder entfernt werden wie in 14.30 beschrieben. Der Programmname erscheint direkt über der Befehlsliste mit einem kleinen Symbol, das zur schnellen Speicherung des Programms angeklickt werden kann.

In der Programmstruktur ist der Befehl markiert, der gerade ausgeführt wird. (wie in 14.2.2 beschrieben).

14.2.2 Programmausführungsanzeige

🜒 Datei		14:07:25	cccc	0
Programm Installation	Bewegen E/A Protokoll			
StartABCDE	Befehl Grafik Struktur Variablen			
▼ Roboterprogramm	A Umbenennen Roboter hierher bewegen Wegpunkt ändern	Fest	e Position	•
<	 Stopp an dieser Stelle Verschleifen mit Radius 0.0 mm Wegpunkt davor Wegpunkt nach 	Optionen anzeige Vegpunkt Entfe	rnen	
Simulation	Geschwindigkeit	🖨 Zurück	Weiter	•

Die Programmstruktur enthält visuelle Hinweise hinsichtlich des Befehls, den der Controller des Roboters gerade ausführt. Ein kleines ► Anzeigesymbol auf der linken Seite des Befehlssymbols wird angezeigt und der Name des gerade ausgeführten Befehls inkl. aller Befehle, von denen dieser Befehl ein Teilbefehl ist (in der Regel durch die Befehlssymbole ►/▼ erkennbar) ist blau markiert. Dies hilft dem Anwender den ausgeführten Programmbefehl in der Struktur zu identifizieren.

Wenn sich beispielsweise der Roboterarm in Richtung eines Wegpunkts bewegt, so wird der entsprechende Teilbefehl des Wegpunkts mit dem 🌢 -Symbol markiert und sein Name wird, zusammen mit dem zugehörigen Namen des Befehls "Move" (siehe 14.5), blau angezeigt.

Wenn das Programm angehalten wird, markiert die Programmausführungsanzeige den letzten Befehl, der gerade durchgeführt wurde.

Durch Klicken auf die untere Schaltfläche mit dem Symbol Springt die Programmstruktur auf den aktuell oder zuletzt ausgeführten Befehl in der Struktur. Wenn ein Befehl angeklickt wird, während ein Programm läuft, zeigt der Befehl-Tab die Information zu dem ausgewählten Befehl an. Durch Drücken der Taste zeigt der Befehl-Tab weitere fortlaufende Informationen über die aktuell ausgeführten Befehle.

14.2.3 Schaltfläche "Suchen"

Über die Schaltfläche mit dem Symbol $\$ lässt sich eine Textsuche in der Programmstruktur durchführen. Nach einem Klick kann ein Suchtext eingegeben werden, woraufhin die entsprechenden Programmknoten gelb hervorgehoben erscheinen. Drücken Sie das Symbol \times , um die Suchfunktion zu verlassen.

14.2.4 Rückgängig/Erneut ausführen - Taste

Die Tasten mit den Symbolen 4 und *e* unterhalb der Programmstruktur dienen dazu, in der Programmstruktur vorgenommene Änderungen und darin enthaltene Befehle rückgängig zu machen bzw. erneut auszuführen.

14.2.5 Programm-Dashboard

Der unterste Teil des Bildschirms ist das *Dashboard*. Das *Dashboard* verfügt über Schaltflächen, die einem traditionellen Kassettenrekorder ähneln, mit denen Programme gestartet und gestoppt, einzeln durchgegangen und neu gestartet werden können. Der *Geschwindigkeitsregler* ermöglicht Ihnen die Anpassung der Programmgeschwindigkeit zu jeder Zeit, was sich direkt auf die Geschwindigkeit auswirkt, mit der sich der Roboterarm bewegt. Zusätzlich zeigt der *Geschwindigkeitsregler* in Echtzeit und unter Einbeziehung der Sicherheitseinstellungen die relative Geschwindigkeit an, in der sich der Roboterarm bewegt. Der angezeigte Prozentsatz im laufenden Programm zeigt die maximal mögliche Geschwindigkeit an, ohne die Grenzwerte des Sicherheitssystems zu überschreiten.

Mit den Tasten links vom *Dashboard* kann zwischen der Ausführung des Programms in einer Simulation oder dem echten Roboter hin- und hergeschaltet werden. Bei einer Simulation bewegt sich der Roboterarm nicht und kann deshalb keinerlei Schäden verursachen. Verwenden Sie die Simulationsfunktion zum Testen von Programmen, wenn Sie sich bzgl. der Bewegungen des Roboterarms unsicher sind.

GEFAHR:

- 1. Stellen Sie sicher, dass Sie sich außerhalb des Wirkungsbereichs des Roboters befinden, wenn die Taste Abspielen gedrückt wird. Die von Ihnen programmierte Aktivität könnte von der erwarteten Bewegung abweichen.
- 2. Stellen Sie sicher, dass Sie sich außerhalb des Wirkungsbereichs des Roboters befinden, wenn die Taste Step gedrückt wird. Die Funktion der Taste Step ist möglicherweise nicht einfach zu verstehen. Verwenden Sie sie nur, wenn absolut notwendig.
- 3. Stellen Sie sicher, dass Sie Ihr Programm immer prüfen, indem Sie die Geschwindigkeit mithilfe des Geschwindigkeitsreglers reduzieren. Logische Programmierfehler des Integrators können unerwartete Bewegungen des Roboterarms verursachen.
- 4. Nachdem eine Notabschaltung oder ein Schutzstopp aufgetreten ist, stoppt das Roboterprogramm. Es kann fortgesetzt werden, solange sich kein Gelenk mehr als 10° bewegt hat. Mit dem Fortsetzen fährt der Roboter langsam auf seine Bahn zurück und führt das Programm fort.

Während das Programm geschrieben wird, wird die daraus folgende Bewegung des Roboterarms mithilfe einer 3D-Zeichnung im Tab Grafik dargestellt (wie in 14.29 beschrieben).

Neben jedem Programmbefehl befindet sich ein kleines rotes, gelbes oder grünes Symbol. Ein rotes Symbol deutet auf einen Fehler in diesem Befehl, gelb weist darauf hin, dass der Befehl nicht abgeschlossen ist und grün steht für eine ordnungsgemäße Eingabe. Ein Programm kann erst ausgeführt werden, wenn alle Befehle grün angezeigt sind.

14.3 Variablen

Ein Roboterprogramm kann Variablen nutzen, um während der Laufzeit verschiedene Werte zu aktualisieren. Es stehen zwei Arten von Variablen zur Verfügung:

- *Installationsvariablen*: Diese können von mehreren Programmen verwendet werden und ihre Namen und Werte bleiben zusammen mit der Roboterinstallation bestehen (siehe 13.10 für weitere Details). Installations-Variablen behalten ihren Wert, auch nachdem Roboter und der Controller neu gestartet wurden.
- *Normale Programmvariablen*: Diese stehen nur dem laufenden Programm zur Verfügung und ihre Werte gehen verloren, sobald das Programm gestoppt wird.

Die folgenden Arten von Variablen stehen zur Verfügung:

bool	Eine Boolesche Variable, deren Wert entweder True (wahr) oder False
	(falsch) ist.
int	Eine Ganzzahl im Bereich von -2147483648 bis 2147483647 (32 bit).
Float	Eine Gleitkommazahl (dezimal)(32 bit).
String	Eine Sequenz von Zeichen.
Pose	Ein Vektor, der die Lage und Ausrichtung im Kartesischen Raum be-
	schreibt. Er ist eine Kombination aus einem Positionsvektor (x, y, z)
	und einem Rotationsvektor (rx, ry, rz), der die Ausrichtung darstellt;
	Schreibweise ist p[x, y, z, rx, ry, rz].
List	Eine Sequenz von Variablen.

14.4 Befehl: Leer

🜒 Datei		14:07:27	cccc 🕜
Programm Installatio	n Bewegen E/A Protokoll		
<pre> <ungenannt></ungenannt></pre>	Befehl Grafik Struktur Variablen		
▼ Roboterprogramm └─■ <leer></leer>	Geben Sie Programmzeiler	n hier ein	
	In der Registerkarte "Struktur" finden Sie verschiedene P werden können.	rogrammaussagen,	die eingefügt Struktur
Simulation	Geschwindigkeit100%	< Zurück	Weiter 🜩

Programmbefehle müssen hier eingegeben werden. Drücken Sie auf die Schaltfläche "Struktur", um zum Tab "Struktur" zu gelangen, in der die verschiedenen auswählbaren Programmzeilen zu finden sind. Ein Programm kann erst ausgeführt werden, wenn alle Zeilen vorgegeben und festgelegt sind.

14.5 Befehl: Move

<u> I</u> 🖉 Datei		14:08:49	cccc 🕜
Programm Installation	Bewegen E/A Protokoll		
🥫 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen		
🗕 Init Variablen 🔺			
▼ Roboterprogramm ← ▼ Switch	Bewegen	Move	-
	Die untenstehenden Werte gelten für alle u der gewählten Bewegungsart ab.	ntergeordneten Wegpunkte und	hängen von
—————————————————————————————————————	🗌 Bewegungen neu berechnen	Gelenkgeschwindigkeit	
	TCP einstellen	60 °/s	
-• al_Ecke_1			
-• a2_Ecke_1		Gelenkbeschleunigung	
a3_ECKe_1	Funktion	80 °/s²	
• ▼ PaletteSequer	Fuβ	Verschleifen mit Badius	
— • Herangeher			
- • MusterPunkt			
- Einstellen Warten			
Beenden 1	🕂 Wegpunkt hinzufügen		
•		Reset	
- • StartPos			
• ▼ Richtung	Kreisbewegung hinzufugen		
- FromPos			
 ✓ Torios ✓ Sequenz wähle ▼ 			
♀ ♠ ▶ ◄▶			
Simulation	Geschwindigkeit	🖓 100% 🔷 🖨 Zurück	Weiter 🜩

Der "Move"- Befehl steuert die Roboterbewegung durch die zugrunde liegenden Wegpunkte. Wegpunkte müssen unter einem Move-Befehl vorhanden sein. Der Befehl "Move" definiert die Beschleunigung und die Geschwindigkeit, mit denen sich der Roboterarm zwischen diesen Wegpunkten bewegen wird.

Bewegungsarten

Folgende drei Bewegungsarten stehen zur Auswahl: *MoveJ, MoveL* and *MoveP*. Zu jeder Art finden Sie im weiteren eine Erläuterung.

- MoveJ (FahreAchse) führt Bewegungen aus, die sich auf den *Gelenkraum* des Roboterarms beziehen. Jedes Gelenk wird so gesteuert, dass alle Gelenke die gewünschte Stellung gleichzeitig erreichen. Diese Bewegungsart sorgt für eine gekrümmte Bewegung des Werkzeugs. Die gemeinsamen Parameter, die für diese Bewegungsart gelten, sind die maximale Gelenkgeschwindigkeit und die Gelenkbeschleunigung für die Berechnungen der Bewegung und werden in *deg/s* bzw. *deg/s²* angegeben. Wenn es gewünscht ist, dass sich der Roboterarm (ungeachtet der Bewegung des Werkzeugs zwischen diesen Wegpunkten) zwischen Wegpunkten schneller bewegt, ist diese Bewegungsart auszuwählen.
- MoveL (FahreLinear) sorgt dafür, dass sich das Werkzeug zwischen Wegpunkten linear bewegt. Das bedeutet, dass jedes Gelenk eine komplexere Bewegung ausführt, um die lineare Bewegung des Werkzeugs sicherzustellen. Die gemeinsamen Parameter, die für diese Bewegungsart eingestellt werden können, sind die gewünschte Werkzeuggeschwindigkeit und die Werkzeugbeschleunigung, angegeben in *mm/s* bzw. *mm/s*², und auch ein Merkmal. Das ausgewählte Merkmal bestimmt, in welchem Merkmalsraum die Werkzeugposi-

tionen der Wegpunkte dargestellt werden. Variablen-Merkmale und -Wegpunkte sind von besonderem Interesse im Hinblick auf Merkmalsräume. Variable Funktionen können eingesetzt werden, wenn die Werkzeugposition eines Wegpunkts durch den Istwert der variablen Funktion bei laufendem Roboterprogramm bestimmt werden muss.

 MoveP bewegt das Werkzeug linear bei konstanter Geschwindigkeit und kreisrunden Biegungen und ist für Abläufe wie beispielsweise Kleben oder Ausgeben konzipiert. Die Größe des Kurvenradius ist standardmäßig ein gemeinsamer Wert zwischen allen Wegpunkten. Ein kleinerer Wert sorgt für eine schärfere Kurve und ein größerer Wert sorgt für eine länger gezogene Kurve. Während sich der Roboterarm bei konstanter Geschwindigkeit durch die Wegpunkte bewegt, kann der Controller weder auf die Betätigung eines E/A, noch auf eine Eingabe durch den Bediener warten. Dadurch kann die Bewegung des Roboterarms eventuell angehalten oder ein Schutz-Aus ausgelöst werden.

Eine **Kreisbewegung** kann einem "MoveP"-Befehl hinzugefügt werden, der aus zwei Wegpunkten besteht: Der erste legt einen Durchgangspunkt auf dem Kreisbogen fest und der zweite ist der Endpunkt der Bewegung. Der Roboter beginnt die Kreisbewegung an seiner aktuellen Position und führt sie durch die beiden festgelegten Wegpunkte. Die Ausrichtungsänderung des Werkzeugs im Verlauf der Kreisbewegung wird nur durch die Ausrichtung am Startpunkt und die Ausrichtung am Endpunkt bestimmt. Die Ausrichtung des Durchgangspunktes hat keinen Einfluss auf die Kreisbewegung. Einer Kreisbewegung muss immer ein Wegpunkt unter dem gleichen FahreP vorausgehen.

Gemeinsame Parameter

Die Einstellungen der gemeinsamen Parameter (unten rechts auf dem Move-Bildschirm) gelten für den Weg zwischen der vorherigen Position des Roboterarms und dem ersten Wegpunkt unter dem Befehl und von dort zu jedem weiteren der nachfolgenden Wegpunkte. Die Einstellungen des Move-Befehls gelten nicht für den Weg *vom* letzten Wegpunkt unter diesem Move-Befehl.

Bewegungen neu berechnen

Markieren Sie dieses Kontrollkästchen, wenn die Positionen innerhalb dieses Fahrbefehls auf Basis des aktiven TCP eingestellt werden sollen.

TCP-Auswahl

Das für die Wegpunkte im Rahmen dieses Fahrbefehls verwendete TCP kann durch Ankreuzen des Kontrollkästchen und Auswahl eines TCP aus dem Dropdown-Menü ausgewählt werden. Das ausgewählte TCP wird jedes Mal dann als aktiv gesetzt, wenn sich der Arm des Roboters zu einem der Wegpunkte unter diesem Move-Befehl bewegt. Wenn das Kontrollkästchen nicht aktiviert ist, wird der aktive TCP in keiner Weise verändert. Wird der aktive TCP für diese Bewegung während der Laufzeit des Programms festgelegt, muss es über den Set-Befehl dynamisch eingestellt werden (siehe 14.10) oder mittels Verwendung von Skriptbefehlen. Weitere Informationen zu TCP-Konfigurationen finden Sie hier 13.6.

Abbildung 14.1: Geschwindigkeitsprofil für eine Bewegung. Die Kurve wird in drei Segmente unterteilt: *Beschleunigung, konstante Bewegung* und *Verzögerung*. Die Ebene der *konstanten Bewegung* wird durch die Geschwindigkeitseinstellung der Bewegung vorgegeben, während der Anstieg und Abfall der Phasen in *Beschleunigung* und *Verzögerung* durch den Beschleunigungsparameter vorgegeben wird.

Auswahl von Funktionen

Im Falle von *MoveL* und *MoveP* ist es möglich bei der Festlegung der Wegpunkte auszuwählen, in welchem Koordinatensystem diese Wegpunkte unter dem Move-Befehl dargestellt werden sollen. Das bedeutet, dass sich das Programm bei der Einstellung eines Wegpunkts an die Werkzeugkoordinaten im Koordinatensystem der gewählten Funktion erinnert. Es gibt nur einige wenige Umstände, die einer detaillierteren Erläuterung bedürfen.

- *Relative Wegpunkte*: Die ausgewählte Funktion hat keinen Einfluss auf die relativen Wegpunkte. Die relative Bewegung ist immer (hinsichtlich der Orientierung) zum *Fuß* hin ausgerichtet.
- Variablen-Wegpunkte:: Bewegt sich der Roboterarm zu einem variablen Wegpunkt, wird die Zielposition des Werkzeugs als die Koordinaten der Variablen im Raum der ausgewählten Funktion berechnet. Deshalb ändert sich die Roboterarmbewegung für einen variablen Wegpunkt, sobald eine anderee Funktion ausgewählt wird.
- *Variablen-Funktion*: Wenn eine der Funktionen in der aktuell geladenen Installation als variabel ausgewählt wird, sind die entsprechenden Variablen ebenfalls im Menü zur Auswahl der Funktion wählbar. Wird eine Funktionsvariable (bezeichnet mit dem Namen der Funktion und nachgestelltem "-var") ausgewählt, sind die Roboterarmbewegungen (ausgenommen von *relativen* Wegpunkten) relativ zum Istwert der Variablen, solange das Programm läuft. Der Anfangswert einer Funktionsvariablen ist der Wert der eigentlichen Funktion, wie bei der Installation konfiguriert. Wenn dieser Wert verändert wird, ändern sich auch die Bewegungen des Roboters.

14.6 Befehl: Fester Wegpunkt

<u> I</u> 🖉 Datei				14:08:57	cccc	\bigcirc
Programm Installation	n Bewegen E/A Prot	okoll				
🔲 <ungenannt></ungenannt>	Befehl Grafik Strukt	tur Variablen				
🗖 Init Variablen 📃 🔺				Fosto	Position	
▼ Roboterprogramm • ▼ Switch	Wegpunkt_1	Umbenennen		reste	Position	
 						
- • Wegpunkt						
🕈 🔍 🖛 🚽 🚽 🚽 PahreAchse		Roboter hierhe	er bewegen			
 Wegpunkt_1 			5			
- Einstellen	Call and a second					
🕈 🐝 Palettieren	- 77	Wegpunkt	ändern			
-• al_Ecke_1						
-• a2_Ecke_1						
-• a3_Ecke_1						
• a4_Ecke_1						
 Herangeher 						
 MusterPunkt 					_	
- Einstellen			Erweiterte Op	tionen anzeigei	n 🔛	
Warten						
Beenden_1	💓 Stopp an dieser Stelle					
• CtartPag	🔘 Verschleifen mit Radius					
	0.0 mm					
FromPos	0,0					
• ToPos						
	Wegpunkt da	avor				
						_
<	Wegpunkt n	ach	We	gpunkt Entfei	rnen	
Simulation	Geschwindig	ceit1	00%	< Zurück	Weiter	•

Ein Punkt auf der Bahn des Roboters. Wegpunkte sind der wichtigste Teil eines Roboterprogramms, denn sie bestimmen die Positionen des Roboters. Ein Wegpunkt mit einer festen Position wird vorgegeben, indem der Roboterarm physisch in die entsprechende Position bewegt wird.

Festlegung des Wegpunktes

Betätigen Sie diese Taste, um zum Bewegen-Bildschirm zu gelangen, über den Sie die Roboterarm-Position für diesen Wegpunkt vorgeben können. Wird der Wegpunkt unter einen linearen Bewegungs-Befehl (Movel oder MoveP) gesetzt, muss ein Bezugskoordinatensystem für diesen Move-Befehl ausgewählt werden, damit diese Schaltfläche betätigt werden kann.

Namen der Wegpunkte

Definierten Wegpunkten wird automatisch ein eindeutiger Name zugewiesen. Der Name kann durch den Benutzer geändert werden. Wegpunkte mit dem gleichen Namen haben dieselben Positionsinformationen. Die Positionsänderung eines Wegpunktes hat daher auf alle anderen, gleichnamigen Wegpunkte gleiche Auswirkungen. Andere Wegpunktinformationen wie Blend-Radius, Werkzeug-/Gelenkgeschwindigkeit und Werkzeug-/Gelenkbeschleunigung werden für jeden einzelnen Wegpunkt konfiguriert, auch wenn sie den gleichen Namen haben.

Überblenden

Überblenden ermöglicht dem Roboter einen sanften Übergang zwischen zwei Bewegungsabläufen ohne am dazwischenliegenden Wegpunkt zu stoppen. **Beispiel** Betrachten wir beispielsweise eine Pick-and-Place-Anwendung (siehe Abbildung 14.2), bei der sich der Roboter aktuell am Wegpunkt 1 (WP_1) befindet und ein Objekt am Wegpunkt 3 abholen (WP_3) soll. Um Kollisionen mit dem Objekt und anderen Hindernissen (O) zu vermeiden, muss sich der Roboter WP_3 aus der Richtung von Wegpunkt 2 kommend (WP_2) nähern. Es werden also drei Wegpunkte für die Bahn einbezogen, um die Anforderungen zu erfüllen.

UNIVERSAL ROBOTS

Abbildung 14.2: WP_1: Ausgangsstellung, WP_2: Zwischenziel, WP_3: Aufnahmeposition, O: Hindernis.

Ohne die Konfiguration weiterer Einstellungen führt der Roboter an jedem Wegpunkt einen Stopp aus, bevor er seinen Bewegungsablauf fortsetzt. Für diese Aufgabenstellung ist ein Stopp bei WP_2 nicht erwünscht, da mit einer reibungslosen Bewegung Zeit und Energie eingespart und die Anforderungen dennoch erfüllt werden. Es ist sogar zulässig, dass der Roboter WP_2 nicht genau erreicht, solange der Übergang von Bewegungsablauf eins zu zwei nahe dieser Position stattfindet.

Der Stopp bei WP_2 kann durch Konfigurieren eines Blending für den Wegpunkt vermieden werden und ermöglicht dem Roboter die Berechnung für einen reibungslosen Übergang zur nächsten Bewegung. Der primäre Parameter für das Überblenden ist der Blendradius. Wenn sich der Roboter innerhalb des Blend-Radius des Wegpunktes befindet, kann er von der ursprünglichen Bahn abweichen. Dies ermöglicht schnellere und gleichmäßigere Bewegungen, da der Roboter weder abbremsen noch beschleunigen muss.

Blend-Parameter Neben den Wegpunkten beeinflussen mehrere Parameter den Bewegungsablauf im Überblend-Bereich (siehe Abbildung 14.3):

- der Blend-Radius (r)
- die Anfangs- und Endgeschwindigkeit des Roboters (an Position pl und entsprechend an p2)
- die Bewegungsdauer (z. B. wenn eine bestimmte Dauer f
 ür einen Bewegungsablauf vorgegeben wird, beeinflusst dies die Anfangs-/Endgeschwindigkeit des Roboters)
- die Bewegungsart im Blend von bzw. zu (MoveL, MoveJ)

Abbildung 14.3: Blending über WP_2 mit Radius r, ursprüngl. Blending-Position bei p1 und letzte Blending-Position bei p2.0 ist ein Hindernis.

Wird ein Blend-Radius eingestellt, so wird der Roboterarm um den Wegpunkt geführt, so dass der Roboterarm an dem Punkt nicht anhalten muss (Verschleifen).

Blend-Bereiche können nicht überlappen, womit ausgeschlossen wird, dass ein eingestellter Blend-Radius mit einem Blend-Radius für einen vorhergehenden oder nachfolgenden Wegpunkt überlappt (siehe Abb. 14.4).

Abbildung 14.4: Blending-Radius-Überlappung nicht zulässig (*).

Bedingte Bewegungsabläufe im Blend-Bereich Bewegungsabläufe im Blend-Bereich sind sowohl vom Wegpunkt, in dem der Blend-Radius festgelegt ist, als auch dem in der Programmstruktur nachfolgenden Wegpunkt abhängig. Das heißt, im Programm in Abbildung 14.5 ist der Blendradius um WP_1 von WP_2 abhängig.

UNIVERSAL ROBOTS

Die Folge davon wird offensichtlicher, wenn das Überblenden wie in diesem Beispiel umWP_2 stattfindet. Es gibt zwei mögliche Endpositionen. Um den nächsten Wegpunkt für das Überblenden zu bestimmen, muss der Roboter den aktuellen Wert von digital_input[1] bereits beim Eintritt in den Blend-Radius berechnen. Dies bedeutet, dass der Ausdruck if...then oder andere notwendige Anweisungen, die den folgenden Wegpunkt bestimmen (z. B. variable Wegpunkte) bereits ausgewertet werden, bevor wir bei WP_2 tatsächlich ankommen. Bei Betrachtung des Programmablaufs klingt dies ein wenig unlogisch. Wenn es sich bei einem Wegpunkt um einen Wegepunkt ohne Blendradius handelt auf welchen beispielsweise einem If-else-Befehl folgt durch welchen (z. B. mit einem E/A-Befehl) der nächste Wegpunkt bestimmt wird, so wird die Prüfung ausgeführt, sobald der Roboterarm am Wegpunkt anhält.

Abbildung 14.5: WP_I ist der Ausgangswegpunkt und es gibt zwei mögliche endgültige Wegpunkte WP_F_1 und WP_F_2, je nach einem bedingten Ausdruck (if ... then). Die Bedingung if wird ausgewertet, sobald der Roboterarm den zweiten Übergang (*) erreicht.

Bewegungsarten in Kombinationen Es ist möglich, alle vier Bewegungsarten von MoveJ und MoveL beim Überblenden zu kombinieren, hierbei hat die spezifische Kombination die entscheidende Auswirkung auf den berechneten Bewegungsablauf im Blend. Es gibt vier mögliche Kombinationen:

- 1. MoveJ zu MoveJ (Übergang im Gelenkraum)
- 2. MoveJ zu MoveL
- 3. Movel zu Movel (Übergang im karthesischen Raum)
- 4. Movel zu MoveJ

Ein reines Überblenden im Gelenkraum (Punkt 1) im Vergleich zu einem auf den kartesischen Raum beschränkten Überblenden (Punkt 3) ist in Abbildung 14.6 dargestellt. Sie zeigt zwei mögliche Bahnen des Werkzeugs für jeweils identische Reihen von Wegpunkten auf.

Abbildung 14.6: Bewegung und Blending im Gelenkraum (MoveJ) im Vgl. zum kartesischen Raum (MoveL).

Von den verschiedenen Kombinationen führen die Punkte 2, 3 und 4 zu Bewegungsabläufen, die innerhalb der Grenzen der ursprünglichen Bahn im kartesischen Koordinatensystem erfolgen. Ein Beispiel für ein Blend zwischen verschiedenen Bewegungsarten (Punkt 2) ist in Abbildung 14.7 zu sehen.

Abbildung 14.7: Blending von einer Bewegung im Gelenkraum (MoveJ) zu linearer Werkzeugbewegung (MoveL).

Ein Überblenden im Gelenkraum (Punkt 1) verhält sich jedoch in einer weniger intuitiven Weise, da der Roboter versuchen wird, der reibungslosesten Bahn im Gelenkraum unter Berücksichtigung von Geschwindigkeit und zeitlichen Anforderungen zu folgen. Aus diesem Grund können Bewegungen vom Kurs abweichen, der durch die Wegpunkte vorgeben ist. Dies ist insbesondere dann der Fall, wenn erhebliche Unterschiede zwischen den Gelenkgeschwindigkeiten der beiden Bewegungsabläufe bestehen. *Vorsicht:* Wenn sich die Geschwindigkeiten stark unterscheiden (z. B. durch die Angabe erweiterter Einstellungen von Geschwindigkeit oder Zeit für einen bestimmten Wegpunkt) so können dadurch größere Abweichungen vom ursprünglichen Bewegungsablauf (wie in Abbildung 14.8 dargestellt) die Folge sein. Falls verschiedene Geschwindigkeiten im Blend-Bereich erforderlich aber Bahnabweichungen nicht akzeptabel sind, sollte das Überblenden im kartesischen Raum mittels Movel erfolgen.

Abbildung 14.8: Blending im Gelenkraum bei erheblich niedrigerer Ausgangsgeschwindigkeit v1 im Vergleich zur Endgeschwindigkeit v2 oder umgekehrt.

14.7 Befehl: Relativer Wegpunkt

<u> (</u> Datei		14:08:57	cccc 🕜
Programm Installation	n Bewegen E/A Protokoll		
<ungenannt></ungenannt>	Befehl Grafik Struktur Variablen		
🗕 Init Variablen 🔺		Polat	ivo Position
▼ Roboterprogramm	Wegpunkt_1 Umbenennen	Neia	ive Fosicion
 	Relative Bewegung, vorgegeben durch die Differenz zwischer	n von und zu Positic	nen
- • Wegpunkt	Von Punkt Zum Punkt	Ent	fernung 0.0 mm
	Diesen Bunkt festlegen Diesen Bunkt fes	tlegen	iennung 0,0 mm
Einstellen	Diesen Funkt Testiegen	Win	kel 179,0 °
🕈 🐝 Palettieren	Roboter hierher bewegen Roboter hierher b	ewegen	
🗣 🛡 Muster: Quadri			
-• al_Ecke_1			
-• a2_Ecke_1			
• a4 Ecke 1			
– • Herangeher			
MusterPunkt Finstellen	Envoitort	e Ontionen anzeide	n 🗆
- Warten	Liweiteit	te optionen anzeige	
Beenden 1	🕥 Stopp an dieser Stelle		
🕈 👶 Entstapeln	Verschleifen mit Badius		
StartPos			
← ▼ Richtung	0,0 mm		
• ToPos			
🔶 🛡 Sequenz wähle 👻	Wegpunkt davor		
♀ ♠ ▶ ◄▶	Wegpunkt nach	Wegpunkt Entfe	rnen
Simulation Realer Roboter	Geschwindigkeit 100%	🔷 Zurück	Weiter 🔶

Ein Wegpunkt, dessen Position in Relation zur vorhergehenden Position des Roboterarms angegeben wird, wie zum Beispiel "zwei Zentimeter nach links". Die relative Position wird als Unterschied zwischen den beiden gegebenen Positionen festgelegt (links nach rechts). Bitte beachten Sie, dass wiederholte relative Positionen den Roboterarm aus dessen Wirkungsbereich heraus bewegen können.

Der Abstand hier ist der kartesische Abstand zwischen dem TCP an beiden Positionen. Der Winkel gibt an, wie sehr die Ausrichtung des TCP sich zwischen beiden Positionen ändert. Genauer gesagt handelt es sich um die Länge des Rotationsvektors, welche die Ausrichtungsänderung angibt.

14.8 Befehl: Variabler Wegpunkt:

🖉 Datei		14:08:58 CCCC 🕜
Programm Installation	n Bewegen E/A Protokoll	
🔲 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen	
🖛 Init Variablen 🔺		Venieklenne eikien
▼ Roboterprogramm ▼ ▼ Switch	Variable Umbenennen	Variablenposition
← ∇ FahreAchse └─● Wegpunkt ── FahreAchse ──	Bewegen Sie den Roboter auf eine variable Positi	on
Wegpunkt_1 Variable	Variable verwenden	
Palettieren		
♥────────────────────────────────────		
 PaletteSequer Herangeher MusterPunkt Einstellen Warten 	🕥 Stopp an dieser Stelle	Erweiterte Optionen anzeigen 🗌
Beenden_1 StartPos P Richtung	Verschleifen mit Radius 0,0 mm	
FromPos ToPos	Wegpunkt davor	
♀ ♠ ▶ ◄▶	Wegpunkt nach	Wegpunkt Entfernen
Simulation Realer Roboter	Geschwindigkeit	00% 🔷 Zurück Weiter 🗭

Ein Wegpunkt, dessen Position durch eine Variable angegeben wird, in diesem Fall berechnete_Pos. Die Variable muss eine *Pose* sein, wie beispielsweise

var=p[0.5,0.0,0.0,3.14,0.0,0.0]. Die ersten drei sind *x,y,z* und die letzten drei beschreiben die Ausrichtung als *Rotationsvektor*, der durch den Vektor *rx,ry,rz* vorgegeben wird. Die Länge der Achse entspricht dem zu drehenden Winkel in Radianten und der Vektor selbst gibt die Achse an, um die die Drehung erfolgt. Die Position wird immer in Bezug auf einen Bezugsrahmen oder ein Koordinatensystem angegeben, definiert durch die ausgewählte Funktion. Der Roboterarm bewegt sich immer linear zu einem variablen Wegpunkt. Wird ein Übergangsradius auf einen festen Wegpunkt gelegt, wobei der vorangegangene und nachfolgende Wegpunkt variabel ist, oder wird ein Übergangsradius auf einen variablen Wegpunkt gelegt, so wird der Übergangsradius nicht auf Überschneidungen geprüft (siehe 14.6). Überschneidet der Übergangsradius bei der Ausführung des Programms einen Punkt, so ignoriert der Roboter diesen und bewegt sich zum nächsten Punkt.

Beispielsweise, um den Roboter 20 mm entlang der z-Achse des Werkzeugs zu bewegen:

```
var_1=p[0,0,0.02,0,0,0]
MoveL
Wegpunkt_1 (Variablen-Position):
    Verwenden Sie Variable=var_1, Funktion=Werkzeug
```

14.9 Befehl: Warten

<u> I</u> Datei	14:07:33	i cccc 🕜
Programm Installation	Bewegen E/A Protokoll	
🔚 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen	
Roboterprogramm ▲ ▼ FahreAchse ● ● Wegpunkt ▼ ▼ FahreAchse ● ● Wegpunkt ■ ■ Einstellen ● ● Palettieren ■ ▼ PaletteSequenz ● ● Herangehensw ● ● Einstellen ●	Warten Bitte wählen Sie, was die nächste Handlung des Roboters auslösen soll; Kein Warten Warten 0.01 Sekunden Auf Digitaleingang warten <di.input> V Low V</di.input>	
Warten Beenden_1 Beenden_1 StartPos StartPos View Richtung FromPos ToPos Sequenz wählen StapelPos_2 Einstellen Warten Beenden_2	Warten auf <an.input> < <a>4.0 mA Warten auf</an.input>	
Warten Warten Vordner Qordner Qordner Simulation		uck Weiter

Wartet eine bestimmte Zeit oder wartet auf ein E/A-Signal.

14.10 Befehl: Einstellen

🥂 🜒 Datei	14:07:33 CCCC 🤇
Programm Installation	Bewegen E/A Protokoll
🗐 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen
Roboterprogramm ▲ ▼ FahreAchse ● ● Wegpunkt ▼ ▼ FahreAchse ● ● Wegpunkt ■ ■ Einstellen ▲ ▲ Palettieren ● ■ Ø Muster ▼ ● ■ PaletteSequenz ● ● ● Herangehensw ■	Einstellen Wählen Sie die Aktion, welche der Roboter an dieser Stelle im Programm ausführen soll. Sie können auch Änderungen in der Roboter-Nutzlast angeben. Keine Aktion Digitalausgang setzen Di.Output>
MusterPunkt_1 Einstellen Warten Beenden_1 Entstapeln StartPos	Analogausgang setzen <an.output> 4.0 mA Einstellen <output> f(x)</output></an.output>
 ♥ Richtung ● FromPos ● ToPos ♥ Sequenz wählen ● StapelPos 2 ■ Einstellen ■ Warten ● Beenden_2 	Installationsvariable um eins erhöhen: <variable> Gesamtnutzlast einstellen auf 0,00 kg Aktiven TCP als Schwerpunkt verwenden</variable>
Warten Vordner ♥ Ordner ■ ● ● ● <td>TCP einstellen</td>	TCP einstellen
Simulation Realer Roboter	Geschwindigkeit 🔤 🖓 100% 🔷 Zurück Weiter 🗭

Setzt entweder digitale oder analoge Ausgänge auf einen vorgegebenen Wert.

Der Befehl kann ebenso zur Einstellung der Tragfähigkeit des Roboterarms eingesetzt werden. Eine Anpassung der Tragfähigkeit könnte erforderlich sein, um zu verhindern, dass der Roboter einen Schutzstopp auslöst, falls das Gewicht am Werkzeug vom erwarteten Gewicht abweicht. Der aktive TCP wird auch als Standardeinstellung für den Schwerpunkt verwendet. Soll der aktive TCP nicht den Schwerpunkt ausmachen, ist der Haken aus dem Kontrollkästchen zu entfernen.

Der aktive TCP kann auch über einen Einstellen-Befehl verändert werden. Setzen Sie einfach den Haken im Kontrollkästchen und wählen Sie eine der TCP-Offsets aus dem Menü. Ist das aktive TCP für eine bestimmte Bewegung zum Zeitpunkt der Programmierung bekannt, können Sie stattdessen die Verwendung der TCP-Auswahl auf der Move-Karte in Betracht ziehen (siehe 14.5). Weitere Informationen zu TCP-Konfigurationen finden Sie hier 13.6.

14.11 Befehl: Meldung

Eine Meldung ist ein Pop-up, das auf dem Bildschirm angezeigt wird, wenn das Programm diesen Befehl erreicht. Der Meldungsstil ist wählbar und der Text kann mithilfe der Tastatur auf dem Bildschirm eingegeben werden. Der Roboter wartet, bis der Benutzer/Bediener die Schaltfläche "O.K." unter dem Pop-up betätigt, bevor er mit dem Programm fortfährt. Wenn der Punkt "Programmausführung stoppen" ausgewählt ist, hält das Programm bei dieser Meldung an.

14.12 Befehl: Halt

Die Ausführung des Programms wird an dieser Stelle angehalten.

14.13 Befehl: Kommentar

Programm Installatio	Developer Crite Constants		
🗐 <ungenannt></ungenannt>	n Bewegen E/A Protokoll		
	Befehl Grafik Struktur Variablen		
 ▼ FahreAchse Wegpunkt ♥ FahreAchse Wegpunkt ■ Einstellen Palettieren ♥ Muster ♥ PaletteSequenz ● Herangehensw ● MusterPunkt_1 ■ Einstellen ■ Warten: 0.01 ● Beenden_1 ● Entstapeln ● StartPos ♥ ▼ Richtung ● FromPos ● ToPos ♥ ▼ Sequenz wählen ● StapelPos_2 ■ Einstellen ■ Warten ● Beenden_2 ■ Warten ● Beenden_2 ■ Warten ● Beenden_2 ■ Warten ● Gordner ■ 	Bitte Kommentar eingeben:		
Kommentar			
Simulation		有 Zurück	Waitar

Hier erhält der Programmierer die Möglichkeit, das Programm durch eine Textzeile zu ergänzen. Diese Textzeile hat auf die Ausführung des Programms keinerlei Auswirkung.

14.14 Befehl: Ordner

Ein Ordner wird zur Organisation und Kennzeichnung bestimmter Programmteile, zur Bereinigung der Programmstruktur und zur Vereinfachung des Lesens und Navigierens im Programm eingesetzt.

Der Ordner selbst führt keine Maßnahmen durch.

14.15 Befehl: Schleife

Die zugrunde liegenden Programmbefehle befinden sich in einer Schleife. In Abhängigkeit von der Auswahl werden die zugrunde liegenden Befehle entweder unbegrenzt, eine gewisse Anzahl oder solange wiederholt wie die vorgegebene Bedingung wahr ist. Bei der Wiederholung für eine bestimmte Anzahl wird eine fest zugeordnete Schleifenvariable (im vorherigen Screenshot 100p_1 genannt) erstellt, die in Ausdrücken innerhalb der Schleife eingesetzt werden kann. Die Schleifenvariable zählt von 0 bis N - 1.

Bei der Erstellung von Schleifen mit einem Ausdruck als Endbedingung bietet PolyScope eine Option zur kontinuierlichen Bewertung dieses Ausdrucks, sodass der "loop" jederzeit während der Ausführung unterbrochen werden kann, anstelle nach jedem Durchlauf.

14.16 Befehl: Unterprogramm

🖉 Datei		14:07:4	• cccc 🕜
Programm Installatio	n Bewegen E/A Protokoll		
ungenannt>	Befehl Grafik Struktur Variablen		
 <ungenannt></ungenannt> Einstellen Warten Beenden_1 StartPos FromPos ToPos StapelPos 2 Einstellen StapelPos 2 Einstellen Warten Beenden_2 Warten 	Befehl Grafik Struktur Variablen Unterprogramm_1 Ein Unterprogramm kann entweder auf eine Datei auf der in diesem Programm enthalten sein. Unterprogrammdatei: <no file="" selected=""></no>	Festplatte verwe	Umbenennen isen oder den
- Var_2:=2 * force()	Unterprogramm speicnern Unterpro	gramm loscher	1
V Rufen Unterprogra V Rufen Unterprogramm_1 V Unterprogramm_1	☐ Halte Unterprogrammdatei aktualisiert mit diesem Pro ☑ Unterprogrammbaum zeigen ☐ Programmausführung verfolgen	ogramm	
Simulation Realer Roboter	Geschwindigkeit	🔷 🖨 Zuri	ick Weiter 🜩

Ein Unterprogramm kann Programmteile enthalten, die an mehreren Stellen erforderlich sind. Ein Unterprogramm kann eine separate Datei auf der Diskette oder auch versteckt sein, um sie gegen ungewollte Änderungen am Unterprogramm zu schützen.

Befehl: Unterprogramm aufrufen

<u> (</u> Datei	14:07:41	cccc 🕜
Programm Installation	Bewegen E/A Protokoll	
	Befehl Grafik Struktur Variablen	
Congenantic	Unterprogramm aufrufen Wählen Sie die Unterroutine für diese Stelle in der Programmausführung. Unterprogramm_1	
Simulation Realer Roboter	Geschwindigkeit 100%	k Weiter 🔶

Wenn Sie ein Unterprogramm aufrufen, werden die Programmzeilen im Unterprogramm ausgeführt, bevor zur nächsten Zeile übergegangen wird.

14.17 Befehl: Zuordnung

<u> I</u> 🖉 Datei		14:07:39 CCCC 🕜
Programm Installation	Bewegen E/A Protokoll	
-ungenannt>	Befehl Grafik Struktur Variablen	
	Zuweisung	Quelle Ausdruck 💌
Einstellen	Weist die ausgewählte Variable dem Wert des Ausdrucks zu.	
• Beenden_1	Variable Ausdruck	
 StartPos ▼ Richtung FromPos ToPos StapelPos_2 Einstellen Warten Beenden_2 	Var_2 Umbenennen	2 * force()
- Warten - ▼ Ordner └ - Kommentar		
- Halt - Meldung -▼ Schleife - ⊂ < eer>		
Script ■ Var_2:=2 * force() ▲ ■ ● ● ● ● ●		
Simulation Realer Roboter	Geschwindigkeit 100%	<table-cell-rows> Zurück 🛛 Weiter 🜩</table-cell-rows>

Weist den Variablen Werte zu. Der berechnete Wert auf der rechten Seite wird der Variablen auf der linken Seite zugeordnet. Dies kann sich bei komplexen Programmen als nützlich erweisen.

14.18 Befehl: If

🜒 Datei		14:07:41	cccc 🕜
Programm Installation	Bewegen E/A Protokoll		
	Befehl Grafik Struktur Variablen		
	If Je nach dem Zustand des jeweiligen Sensoreingangs oder der werden die folgenden Zeilen ausgeführt. If Ausdruck kontinuierlich prüfen	[.] jeweiligen Progr	ammvariable
→ Beenden_2 Warten ♥ Ordner → Kommentar Halt Meldung ♥ Schleife → § Script Var_2:=2 * force() ♥ Var_2:=2 * force()			
Interprogramm 1	Hinzufügen Elself Entfernen Elself Hinzufügen Else		
Simulation Realer Roboter	Geschwindigkeit 100%	💠 Zurück	Weiter 븆

Durch einen "if…else"-Befehl kann der Roboter sein Verhalten aufgrund von Sensoreingängen oder Variablenwerten ändern. Verwenden Sie den Ausdruckseditor, um die Bedingung zu beschreiben, in der der Roboter mit den Unterbefehlen dieses If fortfahren soll. Wenn die Bedingung mit True bewertet wird, werden die Zeilen in diesem If ausgeführt.

Jedes If kann mehrere ElseIf-Befehle und einen Else-Befehl haben. Diese können mithilfe der Schaltflächen auf dem Bildschirm hinzugefügt werden. Ein ElseIf-Befehl kann für diesen Befehl vom Bildschirm entfernt werden.

Durch Anklicken von Ausdruck kontinuierlich prüfen wird die Bewertung der Bedingungen der If- und ElseIf-Aussagen ermöglicht, während die darin enthaltenen Zeilen ausgeführt werden. Wenn ein Ausdruck mit *False* bewertet wird, während dieser innerhalb des If-Teils ist, wird folgende ElseIf oder Else-Aussage erreicht.

14.19 Befehl: Script

Dieser Befehl ermöglicht den Zugang zur zugrunde liegenden Echtzeitskriptsprache, die vom Controller des Roboters ausgeführt wird. Er ist nur für erfahrene Benutzer bestimmt und Anweisungen zu seiner Verwendung finden Sie im Skripthandbuch auf der Support-Webseite (http://www.universal-robots.com/ support).

Mit der Option "File" oben links können Skript-Programmdateien erstellt und bearbeitet werden. So können lange und komplexe Skript-Programme zusammen mit der bedienerfreundlichen Programmierung von PolyScope eingesetzt werden.

14.20 Befehl: Ereignis

Ein Ereignis kann zur Überwachung eines Eingangssignals eingesetzt werden und eine Maßnahme durchführen oder eine Variable einstellen, wenn dieses Eingangssignal auf HIGH wechselt Wechselt beispielsweise ein Ausgangssignal auf HIGH, kann das Ereignisprogramm 200 ms warten, bevor es das Signal anschließend wieder auf LOW zurücksetzt. Dadurch kann der Hauptprogrammcode erheblich vereinfacht werden, falls eine externe Maschine durch eine ansteigende Flanke anstelle eines HIGH-Pegels ausgelöst wird. Ein Ereignis wird einmal pro Kontrollzyklus (8 ms) überprüft.

14.21 Befehl: Thread

Ein Thread ist ein paralleler Prozess zum Roboterprogramm. Ein Thread kann zur Steuerung einer externen Maschine, unabhängig vom Roboterarm, eingesetzt werden. Ein Thread kann mithilfe von Variablen und Ausgangssignalen mit dem Roboterprogramm kommunizieren.
14.22 Befehl: Switch

<u> I</u> Datei		14:08:00	сссс	\bigcirc
Programm Installation	Bewegen E/A Protokoll			
🔲 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen			
🗢 Init Variablen 🔺				
▼ Roboterprogramm • ▼ Switch - =	Switch	es Programms zu		
	steuern. Diese können komplexe wenn SonstWenn -Anweis eine Reihe von Werten für Ihren Ausdruck testen.	sungen ersetzen	und	
← Einstellen	Switch f(x)			
← Entstapeln	Standard-Case Case 1			
• ▼ Sequenz wähle • • • • • •	Case Keine Auswahl 🔻			
Simulation	Geschwindigkeit 100%	🖨 Zurück	Weiter	•

Durch einen "Switch Case"-Befehl kann der Roboter sein Verhalten aufgrund von Sensoreingängen oder Variablenwerten ändern. Verwenden Sie den Ausdruckseditor, um die Bedingung zu beschreiben, in welchen der Roboter mit den Unterbefehlen dieses Switch fortfahren soll. Wenn die Bedingung einen dieser Fälle erfüllt, werden die Zeilen in dem jeweiligen Case ausgeführt. Wurde ein Default Case festgelegt, werden die Linien nur dann ausgeführt, wenn keine anderen passenden Fälle wurden gefunden.

Jeder Switch kann mehrere Cases sowie einen Default Case haben. In einem Switch kann immer nur eine Instanz pro Case-Wert definiert sein. Cases können mithilfe der Schaltflächen auf dem Bildschirm hinzugefügt werden. Ein Case-Befehl kann für diesen Switch vom Bildschirm entfernt werden.

14.23 Befehl: Muster

<u> (</u> Datei		14:07:43 CCCC 🕜
Programm Installati	on Bewegen E/A Protokoll	
🔲 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen	
Palettieren ✓ Muster PaletteSequenz • Herangehensw • MusterPunkt_1	Muster Ein Muster ist eine Gruppe von Positionen. Muster können zum Palettieren usw. verwendet wer	den.
← Warten: 0.01 • Beenden_1 • Entstapeln • StartPos	Positionen auf einer Linie	Zeile
	Positionen in einem Rechteck	Quadrat
StapelPos_2 Einstellen Warten Beenden_2	Positionen in einer Box	Box
■ Warten ▼ Ordner └── ■ Kommentar	Eine Liste der Positionen	Liste
■ Halt ■ Meldung ▼ Schleife ■ <leer></leer>	_	
Simulation Realer Roboter	Geschwindigkeit	0% 🔶 Zurück Weiter 🔿

Der Befehl "Muster" kann eingesetzt werden, um die Positionen im Roboterprogramm zu durchlaufen. Der Befehl "Muster" entspricht bei jeder Ausführung einer Position.

Ein Muster kann aus Punkten in einer Linie, in einem Quadrat, in einer Box oder nur aus einer Liste aus Punkten bestehen. Die ersten drei, nämlich "Linie", "Quadrat" oder "Box" können für Positionen in einem regelmäßigen Muster verwendet werden. Die regelmäßigen Muster werden von einer Anzahl an charakteristischen Punkten definiert, wobei die Punkte die Kanten/Ecken des Musters definieren. Für "Linie" sind dies die beiden Endpunkte, für "Quadrat" sind es drei der vier Eckpunkte, während es für "Box" vier der acht Eckpunkte sind. Der Programmierer gibt die Anzahl der Positionen entlang jeder der Ecken im Muster ein. Die Robotersteuerung errechnet dann die einzelnen Musterpositionen, indem die Eckenvektoren proportional addiert werden.

Wenn die durchlaufenen Positionen nicht in ein regelmäßiges Muster fallen, kann man "Liste" wählen und sich der von den Programmierern bereitgestellten Positionen bedienen. Auf diese Weise kann jede Art von Positionierung realisiert werden.

Muster definieren

Bei Wahl des "Box"-Musters wechselt der Bildschirm zu dem unten gezeigten.

UNIVERSAL ROBOTS

Ein "Box"-Muster verwendet drei Vektoren, um die Seite der Box zu definieren. Diese drei Vektoren sind als vier Punkte gegeben, wobei der erste Vektor von Punkt ein bis Punkt zwei, der zweite von Punkt zwei bis Punkt drei und der dritte von Punkt drei bis Punkt vier geht. Jeder Vektor wird durch die Anzahl der Punkte in dem angegebenen Intervall dividiert. Jede Position im Muster wird durch das proportionale Addieren der Intervektoren berechnet.

Das "Linie"- und "Quadrat"-Muster funktioniert ähnlich.

Eine Zähler-Variable wird beim Durchgehen der Positionen im Muster verwendet. Der Name der Variablen wird auf dem Befehlsbildschirm Muster angezeigt. Die Variable durchläuft die Zahlen von 0 bis x * y * z - 1, die Anzahl der Punkte in den Mustern. Diese Variable kann mit Zuweisungen manipuliert und in Ausdrücken verwendet werden.

14.24 Befehl: Kraft

Der Kraftmodus (Force) ermöglicht eine Positionsanpassung und Kraftanwendung in der ausgewählten Achse im Wirkungsbereich des Roboters. Alle Roboterarmbewegungen im Rahmen eines Force-Befehls erfolgen im Kraftmodus. Bei Bewegung des Roboterarms im Kraftmodus können eine oder mehrere Achsen ausgewählt werden, in denen eine Positionsanpassung durch den Roboter vorgenommen wird. An diesen/Um diese konformen Achsen folgt der Roboterarm der Umgebung, d. h. er passt seine Position so an, dass die gewünschte Kraft erreicht wird. Der Roboterarm kann auch selbst auf seine Umgebung, z. B. ein Werkstück, Kraft ausüben.

Der Kraftmodus eignet sich für Anwendungen, bei denen die eigentliche TCP-Position entlang einer vorgegebenen Achse keine ausschlaggebende Bedeutung hat, sondern eher eine bestimmte Kraft entlang dieser Achse angewendet werden soll. Dies ist beispielsweise der Fall, wenn das Roboter-TCP auf eine gekrümmte Oberfläche trifft oder beim Schieben oder Ziehen eines Werkstücks. Der Kraftmodus lässt sich auch auf bestimmte Drehmomente um vorgegebene Achsen anwenden. Hinweis: Trifft der Roboterarm an einer Achse mit Krafteinstellung ungleich null auf keinerlei Hindernis, so tendiert er entlang/an dieser Achse zur Beschleunigung.

Auch wenn eine Achse als konform ausgewählt wurde, bewegt das Roboterprogramm den Roboter entlang/um diese/r Achse. Mithilfe der Kraftregelung ist jedoch sichergestellt, dass der Roboterarm die vorgegebene Kraft dennoch erreicht.

Auswahl von Funktionen

Im Funktionsauswahlmenü wird das vom Roboter während des Betriebs im Kraftmodus zu verwendende Koordinatensystem (Achsen) ausgewählt. Die im Menü enthaltenen Funktionen sind die, die bei der Installation festgelegt wurden, siehe 13.12.

Kraftmodustyp

Es gibt vier verschiedene Kraftmodustypen, die bestimmen, wie die ausgewählte Funktion jeweils interpretiert wird.

- Einfach: In diesem Kraftmodus ist nur eine Achse konform. Die Kraftanwendung entlang dieser Achse ist anpassbar. Die gewünschte Kraft wird immer entlang der z-Achse der ausgewählten Funktion angewendet. Bei Linienfunktionen geschieht dies entlang der y-Achse.
- Rahmen: Der Rahmen-Kraftmodus ermöglicht eine erweiterte Anwendung. Die Positionsanpassung und die Kräfte in allen sechs Freiheitsgraden können hier unabhängig voneinander eingestellt werden.

- **Punkt**: Bei Auswahl des Punkt-Kraftmodus verläuft die y-Achse des Task-Rahmens vom Roboter-TCP zum Ursprung der ausgewählten Funktion. Der Abstand zwischen dem Roboter-TCP und dem Ursprung der ausgewählten Funktion muss mindestens 10 cm betragen. Bitte beachten Sie, dass sich der Task-Rahmen während der Ausführung mit der Position des Roboter-TCPs ändert. Die x- und z-Achse des Task-Rahmens sind von der ursprünglichen Ausrichtung der ausgewählten Funktion abhängig.
- Bewegung: Bewegung bedeutet, dass sich der Task-Rahmen mit der Richtung der TCP-Bewegung verändert. Die x-Achse des Task-Rahmens ist eine Projektion der TCP-Bewegungsrichtung auf der Ebene zwischen x- und y-Achse der ausgewählten Funktion. Die y-Achse ist orthogonal zur Bewegung des Roboterarms gerichtet und in der x-y-Ebene der ausgewählten Funktion. Dies kann beim Entgraten entlang eines komplexen Pfades hilfreich sein, wo eine zur TCP-Bewegung orthogonale Kraft gebraucht wird. Hinweis bei Stillstand des Roboterarms: Wird in den Kraftmodus übergegangen, wenn der Roboterarm stillsteht, so gibt es keine konformen Achsen bis die TCP-Geschwindigkeit über null liegt. Wenn der Roboterarm später, immer noch im Kraftmodus, wieder stillsteht, hat der Task-Rahmen die gleiche Ausrichtung wie zu dem Zeitpunkt, als die TCP-Geschwindigkeit das letzte Mal über null lag.

Für die letzten drei Kraftmodustypen wird der tatsächliche Task-Rahmen während der Ausführung im Tab "Grafik" (14.29) angezeigt, wenn der Roboter im Kraftmodus betrieben wird.

Kraftwertauswahl

Der Kraftwert kann - mit unterschiedlicher Wirkung - sowohl für konforme als auch nicht-konforme Achsen ausgewählt werden.

- **Konform**: Der Roboterarm passt seine Position an, um die vorgegebene Kraft zu erreichen.
- Nicht konform: Der Roboterarm folgt seiner vom Programm vorgegebenen Bahn und wendet eine externe Kraft der hier eingegebenen Stärke auf.

Für Übersetzungsparameter wird die Kraft in Newton [N] angegeben, für Rotationsparameter wird das Drehmoment in Newtonmeter [Nm] angegeben.

Grenzwertauswahl

Für alle Achsen können Grenzwerte eingegeben werden, die allerdings, je nach Konformität der Achse, verschiedene Bedeutung haben.

- Konform: Der Grenzwert gibt die maximal zulässige Geschwindigkeit des TCP entlang/an der Achse an. Die Einheiten sind [mm/s] und [deg/s].
- Nicht konform: Der Grenzwert gibt die maximal zulässige Abweichung von der vom Programm vorgegebenen Bahn an, über welcher ein Sicherheitsstopp des Roboters ausgelöst wird. Die Einheiten sind [mm] und [deg].

Krafteinstellungs-Test

Über den als "Test" gekennzeichneten Ein-/Aus-Schalter wird die Freedrive-Taste hinten am Teach Pendant vom normalen Freedrive-Modus auf Testen des Force-Befehls umgeschaltet.

Wenn bei eingeschaltetem Testschalter die Freedrive-Taste hinten am Teach Pendant gedrückt wird, führt der Roboter den Force-Befehl ohne Durchlauf des Programms direkt aus, sodass die Einstellungen vor der eigentlichen Ausführung des Programms geprüft werden können. Diese Funktion ist besonders nützlich, um sicherzustellen, dass konforme Achsen und Kräfte korrekt ausgewählt und eingestellt wurden. Halten Sie den Roboter-TCP einfach mit einer Hand, drücken Sie mit der anderen Hand die Freedrive-Taste und beobachten Sie, in welche Richtungen der Roboterarm bewegt oder nicht bewegt werden kann. Nach Verlassen dieses Bildschirms wird der Teach Test-Schalter automatisch abgeschaltet, so dass die Freedrive-Taste hinten am Teach Pendant wieder für den freien Freedrive-Modus genutzt werden kann. Hinweis: Die Freedrive-Taste ist nur wirksam, wenn für den Force-Befehl eine gültige Funktion ausgewählt wurde.

14.25 Befehl: Palettieren

Ein Palettenbetrieb kann eine Reihe von Bewegungen an bestimmten Stellen beinhalten, die als Muster vorgegeben sind (siehe Beschreibung in 14.23). An jeder Stelle im Muster wird die Abfolge von Bewegungen in Relation zur Position im Muster durchgeführt.

Programmierung eines Palettenbetriebs

Die durchzuführenden Schritte lauten wie folgt:

- 1. Festlegung eines Musters.
- 2. Führen Sie eine "Palettenabfolge" für die Aufnahme/das Ablegen an jeder einzelnen Stelle durch. Die Abfolge beschreibt, was an jeder Position im Muster durchzuführen ist.
- 3. Verwenden Sie das Auswahlwerkzeug im Menü Abfolgebefehl, um festzulegen, welcher der Wegpunkte in der Abfolge welcher Position im Muster entsprechen soll.

Palettenabfolge/Verankerbare Abfolge

In einer Palettenabfolgelinie sind die Bewegungen des Roboterarms auf die Position der Palette bezogen. Das Verhalten einer Abfolge ist so, dass sich der Roboterarm an der durch das Muster vorgegebenen Position befinden wird, in der Verankerungsposition. Damit diese übereinstimmen, werden alle verbleibenden Positionen verschoben.

Verwenden Sie bitte den Befehl Move nicht innerhalb einer Abfolge, da dieser nicht relativ zur Verankerungsposition erfolgen wird.

"VorStart"

Die optionale VorStart-Abfolge wird kurz vor Anfang des Stapelvorgangs ausgeführt. Dies kann genutzt werden, um auf Freigabesignale zu warten.

"NachEnde"

Die optionale NachEnde-Abfolge wird kurz nach Ende des Stapelvorgangs ausgeführt. Diese kann dafür eingesetzt werden, um zu signalisieren, dass die Bewegung des Conveyers in Vorbereitung auf die nächste Palette beginnen kann.

14.26 Befehl: Suchen

Die Suchfunktion verwendet einen Sensor, um zu bestimmen, wann die korrekte Position erreicht ist, um ein Element zu fassen oder loszulassen. Der Sensor kann ein Drucktastenschalter, ein Drucksensor oder ein kapazitiver Sensor sein. Diese Funktion ist für Arbeiten an Stapeln aus Artikeln mit unterschiedlicher Dicke konzipiert, oder wenn die genauen Positionen der Artikel nicht bekannt oder schwierig zu programmieren sind.

Bei der Programmierung eines Stapelvorgangs ist der Ausgangspunkt s, die Stapelrichtung d und die Dicke der Elemente auf dem Stapel i zu definieren. Dazu ist die Voraussetzung für die nächste Stapelposition sowie eine spezielle Programmabfolge, die an jeder Stapelposition ausgeführt wird, zu definieren. Auch Geschwindigkeit und Beschleunigungen müssen für die Bewegung im Stapel bestimmt werden.

StapeIn

Beim Stapeln bewegt sich der Roboterarm in die Ausgangsposition und dann in die *Gegenrichtung*, um die nächste Stapelposition zu suchen. Wenn gefunden, merkt sich der Roboter die Position und führt die spezielle Abfolge aus. Das nächste Mal startet der Roboter die Suche aus dieser Position, erweitert um die Stärke des Elements in der Stapelrichtung. Das Stapeln ist beendet, wenn die Stapelhöhe eine bestimmte Anzahl erreicht hat oder der Sensor ein Signal gibt.

Entstapeln

<u> </u> Datei		14:07:30	cccc 🕜
Programm Installatio	n Bewegen E/A Protokoll		
🔲 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen		
▼ Roboterprogramm ● Wegpunkt ● Wegpunkt ● Wegpunkt ● Wegpunkt ● Palettieren ● Palettieren ● Herangeher ● MusterPunkt ● Einstellen ● StartPos ● Beenden_1 ● StartPos ● Richtung	EntstapeIn EntstapeIn entfernt Elemente nacheinander von einem Stapel. Der Stapel ist durch folgende Parameter definiert: s: Die Ausgangsposition d: Die Richtung des Stapels i: Der Artikeldicke		
← ▼ Sequenz wähk ← ■ Warten ← ▼ Ordner	Die nächste Stapelposition ist erreicht, wenn:		f(x)
 <leer></leer> Kommentar Halt Meldung ♥ Schleife <leer></leer> ■ script ♥ 	Elementstärke 0,0 mm Sequenz vor Start Sequenz nach Ende Gemeinsame Paramel Werkzeuggeschwindigkei Werkzeugbeschleunigund Auf Werkseinstellund	ter t g ngen zurückse	250 mm/s 1200 mm/s ²
Simulation	▶ ▶ Geschwindigkeit ────────────────────────────────────	< Zurück	Weiter 🔿

Beim Entstapeln bewegt sich der Roboterarm von der Ausgangsposition in die angegebene Richtung, um nach dem nächsten Element zu suchen. Die Voraussetzung auf dem Bildschirm bestimmt, wann das nächste Element erreicht wird. Wenn die Voraussetzung erfüllt wird, merkt sich der Roboter die Position und führt die spezielle Abfolge aus. Das nächste Mal startet der Roboter die Suche aus dieser Position, erweitert um die Stärke des Elements in der Stapelrichtung.

Ausgangsposition

Das Stapeln beginnt mit der Ausgangsposition. Wird die Ausgangsposition weggelassen, fängt das Stapeln an der aktuellen Position des Roboterarms an.

Richtung

<u> I</u> Datei		14:07:31 C	ccc 🕜
Programm Installation	Bewegen E/A Protokoll		
-ungenannt>	Befehl Grafik Struktur Variablen		
▼ Roboterprogramm ▲			
 ▼ FahreAchse ● Wegpunkt ▼ FahreAchse 	Richtung		
└─• Wegpunkt ── Einstellen ९-∴ Palettieren	Eine Richtung wird durch die Linie zwischen der TCP-Position vor vorgegeben.	n zwei Wegpunkten	
▼ Muster •-▼ PaletteSequer • Herangeber	Stopp nach 500,0 mm	_	
– • MusterPunkt – – Einstellen – – Warten	Stopp, wenn	f(x)	
● Beenden_1 • Sentstapeln			
—● StartPos •- ▼ Richtung •- ▼ Sequenz wähle			
= Warten ← ▼ Ordner			
Kommentar	-Gemeinsame Paramete	er	
- Meldung	Werkzeuggeschwindigkeit		10 mm/s
<pre>v schielle</pre>	Werkzeugbeschleunigung	12	00 mm/s²
Image: Script ▼ Image: Script	Auf Werkseinstellun	gen zurücksetze	n
Simulation	Geschwindigkeit 100%	 	Weiter 🜩

Die Richtung wird durch zwei Punkte angezeigt und ist als Differenz aus der ersten TCP Punkt zu einem anderen Punkt TCP berechnet. Hinweis: Eine Richtung berücksichtigt nicht die Ausrichtung der Punkte.

Ausdruck der nächsten Stapel-Position

Der Roboterarm bewegt sich entlang des Richtungsvektors, während er fortlaufend bewertet, ob die nächste Stapel-Position erreicht worden ist. Wenn der Ausdruck als Wahr bewertet wird, wird die spezielle Abfolge ausgeführt.

"VorStart"

Die optionale VorStart-Abfolge wird kurz vor Anfang des Stapelvorgangs ausgeführt. Dies kann genutzt werden, um auf Freigabesignale zu warten.

"NachEnde"

Die optionale NachEnde-Abfolge wird kurz nach Ende des Stapelvorgangs ausgeführt. Dies kann genutzt werden, um dem Conveyer ein Signal zur Vorbereitung auf den nächsten Stapel zu geben.

Einlege/Entnahme-Sequenz

Wie beim Palettenbetrieb (14.25) wird an jeder Stapelposition eine spezielle Programmabfolge ausgeführt.

14.27 Befehl: Fließbandverfolgung

Wird ein Fließband verwendet, kann der Roboter so konfiguriert werden, dass er dessen Bewegung verfolgt. Ein Programmknoten Fließbandverfolgung steht für die Verfolgung des Fließbands zur Verfügung. Wenn das in der Installation definierte Fließbandverfolgung ordnungsgemäß konfiguriert wurde, ist das Tracking eines linearen oder kreisförmigen Fließbands möglich. Der Knoten kann aus dem Programmassistenten unter dem Tab "Struktur" hinzugefügt werden. Während das Programm unter dem Fließbandverfolgung-Knoten ausgeführt wird, passt der Roboter passt seine Bewegungen an, um das Fließband zu folgen. Andere Bewegungen sind während des Trackings erlaubt, orientieren sich aber an der Bewegung des Fließbands.

14.28 Befehl: Unterdrücken

Unterdrückte Programmzeilen werden bei der Programmausführung übersprungen. Die Unterdrückung einer Zeile kann zu einem späteren Zeitpunkt wieder aufgehoben werden. Dies ist eine einfache Methode, um Änderungen an einem Programm vorzunehmen, ohne die ursprünglichen Inhalte zu zerstören.

14.29 Grafik-Tab

Grafische Darstellung des aktuellen Roboterprogramms. Der Weg des TCP wird in der 3D-Ansicht gezeigt, mit schwarzen Bewegungssegmenten und grünen Übergangssegmenten (Übergänge zwischen den Bewegungssegmenten). Die grünen Punkte bestimmen die Positionen des TCP an jedem der Wegpunkte im Programm. Die 3D-Zeichnung

Copyright @2009-2016 by Universal Robots A/S Alle Rechte vorbehalten.

des Roboterarms zeigt die aktuelle Position des Roboterarms, während der "Schatten" des Roboterarms verdeutlicht, wie der Roboterarm beabsichtigt, die auf der linken Bildschirmseite gewählten Wegpunkte zu erreichen.

Wenn die aktuelle Position des Roboter-TCP sich einer Sicherheits- oder Auslöserebene nähert oder die Ausrichtung des Roboterwerkzeugs sich nahe am Limit der Werkezugausrichtungsgrenze (siehe 10.12) befindet, wird eine 3D-Darstellung des Näherungslimits der Grenze angezeigt. Beachten Sie, dass die Visualisierung der Grenzlimits deaktiviert wird, während der Roboter ein Programm ausführt.

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Ebene Normal steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöserebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil angezeigt, der auf die Seite der Ebene zeigt, auf der die Grenzen des Modus *Normal* (siehe 10.6) aktiv sind. Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Wenn der Zielroboter-TCP sich nicht mehr in Nähe zum Limit befindet, verschwindet die 3D-Darstellung. Wenn der TCP einen Grenzwert überschreitet oder dem sehr nahe ist, ändert sich die Limitanzeige zu rot.

Die 3D-Ansicht kann vergrößert und gedreht werden, um den Roboterarm besser sehen zu können. Die Schaltflächen oben rechts im Bildschirm können die verschiedenen grafischen Komponenten in der 3D-Ansicht deaktivieren. Die Schaltfläche unten schaltet die Visualisierung von Limits von Näherungsgrenzen ein/aus.

Die gezeigten Bewegungssegmente hängen vom gewählten Programmknoten ab. Wenn ein Move-Knoten ausgewählt wird, ist der angezeigte Pfad die mit diesem Move definierte Bewegung. Wird ein Wegpunkt-Knoten gewählt, zeigt das Display die folgenden ~ 10 Bewegungsschritte:

14.30 Struktur-Tab

🜒 Datei					14:07:27	cccc	0
Programm Installation	n Bewegen	E/A Prot	okoll				
<ungenannt></ungenannt>	Befehl Graf	ik Strukt	ur Variablen				
▼ Roboterprogramm −−	Program	nm-Str	uktur-Edito	r			
	Stellung des Kr Einfügen	notens festle	gen Nach der Ausw	rahl 💌			
	ļ	Basis F	ortgeschritten A	ssistenten			
			Bewegen	w	Vegpunkt		
			Warten	E	instellen		
			Meldung		Halt		
		ŀ	Kommentar		Ordner		
	Bearbeiten						
	🔒 Bew	egen	Kopieren	Einfüger	n U	Interdrücke	n
♀ ♠ ◄►	- Bew	egen	Ausschneiden	Löscher	n		
Simulation	► ► G	eschwindig	ceit1	00%	< Zurück	Weite	-

Im Tab "Struktur" kann man die verschiedenen Befehlsarten einfügen, verschieben,

<text><text><text><text><text><text>

14.31 "Variablen"-Tab

<u> I</u> Datei		14:08:59	cccc 🕜
Programm Installatio	n Bewegen E/A Protokoll		
🔲 <ungenannt></ungenannt>	Befehl Grafik Struktur Variablen		
🗕 Init Variablen 🔺			Löschen
▼ Roboterprogramm			Losenen
¬ ¬ ¬ Switch …	Var_2: 3.5743808E-6		
•−▼ FahreAchse			
- • Wegpunkt			
🛉 🔻 FahreAchse 🛛 🚃			
Wegpunkt_1			
 Variable 			
- Einstellen			
🕈 🐝 Palettieren			
• ▼ Muster: Quadri			
• al_Ecke_1			
-• a2_Ecke_1			
-• a3_Ecke_1			
• a4_Ecke_1			
• Herangener			
- MusterPunkt			
- Warten			
- Warten			
- StartPos			
▼ Richtung			
- • FromPos			
• ToPos			
<	a		
Simulation	Geschwindigkeit 100%	< Zurück	Weiter 🔿

Der Tab "Variablen" zeigt die Live-Werte von Variablen im laufenden Programm und führt eine Liste von Variablen und Werten zwischen Programmverläufe auf. Er erscheint, wenn er anzuzeigende Informationen enthält. Alle Variablen sind alphabetisch nach ihren Namen geordnet. Die Variablenbezeichnungen werden in diesem Bildschirm mit höchstens 50 Stellen und die Variablenwerte mit höchstens 500 Stellen angezeigt.

14.32 Befehl: Variablen-Initialisierung

🜒 Datei		14:07:59	cccc 🧃	
Programm Installation Be	ewegen E/A Protokoll			
-ungenannt> Bef	ehl Grafik Struktur Variablen			
– Init Variablen 🔺				
■ Init Variablen ▲ ▼ Roboterprogramm ▲ ● Wegpunkt ■ ● Wegpunkt Die ● Wegpunkt Die ● Wegpunkt Die ● Wegpunkt Die ● Allettieren Die ● al_Ecke_1 Die ● al_Ecke_1 Oit ● al_Ecke_1 Inte ● al_Ecke_1 Inte ● AlletteSequer Herangeher ● MusterPunkt Einstellen ■ Warten Beenden_1 ● StartPos StartPos	Ste Variablenwerte Variable Pose_1 hat keinen Anfangswert Variable Pose_2 hat keinen Anfangswert Variable Schleife_1 hat keinen Anfangswert Variable Schleife_1 hat keinen Anfangswert Variable Var_2 hat keinen Anfangswert 1 = 0 2 = 0 rpolieren_1 = 0.0			
	riable Ausdruck			
- • FromPos				
	· -			
	🗌 Wert des vorherigen Laufes	beibehalten		
Einstellen -				
	mbenennen Aus	sdruck löschen	f(x)	
♀♠ ◄▶				
Simulation Realer Roboter	Geschwindigkeit0100%	💠 Zurück	Weiter 븆	

Dieser Bildschirm ermöglicht die Einstellung von Variablen-Werten, bevor das Programm (mit einem Thread) ausgeführt wird.

Wählen Sie eine Variable aus der Liste der Variablen, indem Sie darauf klicken oder indem Sie die Variablen-Auswahlbox verwenden. Für eine ausgewählte Variable kann ein Ausdruck eingegeben werden, mit dem der Variablen-Wert bei Programmanfang festgelegt wird.

Bei Wahl des Kontrollkästchens "Vorzugsweise Wert aus der letzten Ausführung beibehalten" wird die Variable mit dem Wert initialisiert, der aus dem Tab Variable hervorgeht, wie im Abschnitt 14.31 beschrieben. So können Variablen Ihre Werte zwischen Programmausführungen beibehalten. Die Variable erhält ihren Wert von dem Ausdruck bei erstmaliger Ausführung des Programms oder wenn der Tab-Wert gelöscht wurde.

Eine Variable kann aus dem Programm gelöscht werden, indem ihr Namensfeld leer gelassen wird (nur Leerschritte).

15 Set-up-Bildschirm

- Roboter initialisieren Führt Sie zum Initialisierungsbildschirm, siehe 11.5.
- Sprache und Einheiten Konfigurieren Sie die Sprache und die Maßeinheiten der Benutzeroberfläche, siehe 15.1.
- **Roboter aktualisieren** Aktualisiert die Robotersoftware auf eine neuere Version, siehe 15.2.
- **Passwort festlegen** Bietet die Möglichkeit zur Sperrung des Programmierteils des Roboters für Personen ohne Passwort, siehe 15.3.
- Bildschirm kalibrieren Kalibriert die "Oberfläche" des Touch-Screens, siehe 15.4.
- Netzwerk einrichten Öffnet eine Schnittstelle zur Einrichtung des Ethernet-Netzwerks für den Controller, siehe 15.5.
- Uhrzeit einstellen Stellt die Uhrzeit und das Datum für das System ein und konfiguriert die Anzeigeformate für die Uhr, siehe 15.6.
- URCaps-Einstellung Übersicht über die installierten URCaps sowie Optionen für die Installation und Deinstallation, siehe 15.7.
- Zurück Führt Sie zum Startbildschirm zurück.

15.1 Sprachen und Einheiten

	Roboter einstellen	0
Roboter initialisieren	Sprache auswählen	
Sprachen und Einheiten	Deutsch ▼ ✓ English programming	
Roboter aktualisieren		
Passwort festlegen	S Metrische Einheiten	
Bildschirm kalibrieren	~	
Netzwerk einstellen		
Uhrzeit einstellen		
URCaps-Einstellung		
Zurück	PolyScope neu starten, um neue Einstellungen auszufü Neusta	hren rt

Auf diesem Bildschirm können die in PolyScope verwendeten Sprachen und Einheiten ausgewählt werden. Die ausgewählte Sprache wird für den sichtbaren Text auf den verschiedenen Bildschirmen von PolyScope sowie in der eingebetteten Hilfe verwendet. Aktivieren Sie "Englische Programmierung", damit die Befehle in den Roboterprogrammen in Englisch angezeigt werden. PolyScope muss neu gestartet werden, um Änderungen wirksam zu machen.

15.2 Roboter aktualisieren

	Roboter einstellen	?
Roboter initialisieren	Robotersoftware aktualisieren	
Sprachen und Einheiten	Suche	
Roboter aktualisieren		
Passwort festlegen	Auf "Suchen …" klicken, um eine Liste der möglichen Updates für diesen R zu finden.	oboter
Bildschirm kalibrieren	Beschreibung	
Netzwerk einstellen		
Uhrzeit einstellen		
URCaps-Einstellung		
Zurück	Aktualisieren	

Softwareaktualisierungen können über USB-Sticks installiert werden. Stecken Sie einen USB-Stick ein und klicken Sie auf **Suchen**, um dessen Inhalt anzuzeigen. Um eine Aktualisierung durchzuführen, wählen Sie eine Datei, klicken Sie auf **Aktualisieren** und folgen Sie den Anweisungen auf dem Bildschirm.

WARNUNG:

Prüfen Sie nach einer Softwareaktualisierung stets Ihre Programme. Die Aktualisierung könnte Bahnen in Ihrem Programm verändert haben. Die aktualisierten Softwarespezifikationen können durch Drücken der Schaltfläche "?" rechts oben in der GUI aufgerufen werden. Hardwarespezifikationen bleiben unverändert und können dem Originalhandbuch entnommen werden.

15.3 Passwort festlegen

	Roboter einstellen 🕜
Roboter initialisieren	Systempasswort ändern
Sprachen und Einheiten	Passwörter gewährleisten, dass Änderungen an der Funktionalität und dem Verhalten des Roboters geschützt sind. Alle Bereiche, an denen Änderungen vorgenommen werden können, werden geschützt.
Roboter aktualisieren	Passwort
Passwort festlegen	Passwort bestätigen
Bildschirm kalibrieren	
Netzwerk einstellen	Sicherheitspasswort ändern
Uhrzeit einstellen	neues Passwort ein, bestätigen Sie es und klicken Sie anschließend auf die Schaltfläche. Um das Passwort zu löschen, geben Sie das aktuelle Passwort ein und klicken Sie auf die Schaltfläche.
URCaps-Einstellung	Aktuelles Passwort eingeben
Zurück	Passwort Passwort bestätigen Übernehmen

Zwei Passwörter sind verfügbar. Das erste ist ein *optionales* Systempasswort, das die Konfiguration des Roboters vor nicht autorisierten Änderungen schützt. Wenn ein Systempasswort eingerichtet ist, können Programme zwar ohne Passwort geladen und ausgeführt werden, aber zur Erstellung und Änderung von Programmen muss das Passwort eingegeben werden.

Das zweite ist ein *erforderliches* Sicherheitspasswort, das eingegeben werden muss, um die Sicherheitseinstellungen ändern zu können.

HINWEIS:

Um die Sicherheitskonfiguration ändern zu können, muss das Sicherheitspasswort festgelegt sein.

WARNUNG:

Fügen Sie ein Systempasswort hinzu, um zu verhindern, dass nicht autorisiertes Personal Änderungen an den Einstellungen des Roboters vornimmt.

15.4 Bildschirm kalibrieren

Zeigen Sie sehr genau in der Mitte des blauen Kreuzes.		
OK	Zeigen Sie sehr genau in der Mitte des blauen Kreuz	es.
	OK	

Kalibrieren des Touch-Screens. Befolgen Sie die Anleitung auf dem Bildschirm zur Kalibration des Touch-Screens. Verwenden Sie vorzugsweise einen spitzen, nicht metallischen Gegenstand, beispielsweise einen geschlossenen Stift. Durch Geduld und Sorgfalt lässt sich ein besseres Ergebnis erzielen.

15.5 Netzwerk einstellen

Roboter initialisieren	Netzwerk einstellen	
	Ihre Netzwerkmethode wählen	
prachen und Einheiten	О ПНСР	
	Statische Adresse	
Roboter aktualisieren	Deaktiviertes Netzwerk	
	Netzwerk detaillierte Einstellungen:	
Passwort festlegen	IP-Adresse:	
	Subnetzmaske:	
Bildschirm kalibrieren	Standard-Gateway:	
Netzwerk einstellen	Bevorzugter DNS-Server:	
	Alternativer DNS-Server:	0.0.0
Uhrzeit einstellen		
	Observations	

Fenster zur Einrichtung des Ethernet-Netzwerkes. Für die grundlegenden Roboterfunktionen ist keine Ethernet-Verbindung erforderlich, sodass diese standardmäßig deaktiviert ist.

15.6 Uhrzeit einstellen

	Roboter (einstellen 🕜
Roboter initialisieren	Uhrzeit ei	nstellen
Sprachen und Einheiten	Zeitformat: 24 Stunden 21 Stunden	Wahlen Sie bitte die aktuelle Zeit:
Roboter aktualisieren		
Passwort festlegen		
Bildschirm kalibrieren	Datum ein Bitte wählen Sie das	n stellen heutige Datum:
Netzwerk einstellen	25. Mai 20	016
Uhrzeit einstellen	Datumsformat: 25. Mai 2016 25.05.2016	
URCaps-Einstellung	25.05.16	
Zurück		PolyScope neu starten, um neue Einstellungen auszuführen Neustart

Copyright @2009-2016 by Universal Robots A/S Alle Rechte vorbehalten.

Stellen Sie die Uhrzeit und das Datum für das System ein und konfigurieren Sie die Anzeigeformate für die Uhr. Die Uhr wird im oberen Bereich der Bildschirme *Programm ausführen* und *Roboter programmieren* angezeigt. Wenn Sie die Uhr antippen, wird das Datum kurz eingeblendet. Die GUI muss neu gestartet werden, um Änderungen wirksam zu machen.

15.7 URCaps-Einstellung

Roboter einstellen				
Roboter initialisieren	URCaps-Einstellung Aktive URCaps:			
Sprachen und Einheiten	O com.ur.urcap.helloworld			
Roboter aktualisieren				
Passwort festlegen	URCap-Information:			
Bildschirm kalibrieren	URCap-Name: com.ur.urcap.helloworld Version: 1.0.0.SNAPSHOT Entwickler: URCaps R us Inc.			
Netzwerk einstellen	Kontaktinfo: 123 UrCap Street Beschreibung: This is a description of the UR Cap Copyright: (R)	-		
Uhrzeit einstellen	Lizenz: Copyright (c) , All rights reserved.			
URCaps-Einstellung	Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are			
Zurück	Dedictributions of courses code must retain the above conviriant	▼ art		

In der oberen Liste finden Sie eine Übersicht über alle installierten *URCaps*. Ein Klick auf ein URCap zeigt dessen Meta-Informationen (einschließlich des URCap-Namens, Version, Lizenz usw.) im Bereich URCap-Informationen unterhalb der Liste.

Klicken Sie auf die Schaltfläche + am unteren Bildschirmrand, um ein neues UR-Cap zu installieren. Eine Dateiauswahl wird da angezeigt, wo .urcap-Dateien ausgewählt werden können. Klicken Sie auf Öffnen und PolyScope kehrt zum Einrichtungsbildschirm zurück. Das ausgewählte URCap wird installiert und ein entsprechender Eintrag erscheint kurz danach in der Liste. Neu installierte oder deinstallierte URCaps erfordern einen Neustart von PolyScope. Dazu wird die Schaltfläche Restart aktiviert.

Um ein URCap zu deinstallieren, wählen Sie es einfach in der Liste aus und klicken Sie auf die Schaltfläche –. Auch wenn das URCap jetzt bereits aus der Liste entfernt ist, muss dennoch anschließend ein Neustart durchgeführt werden.

Das Symbol neben einem Eintrag in der Liste zeigt den Zustand des URCap. Die verschiedenen Zustände sind nachstehend beschrieben:

V URCap o.k.: Das URCap ist installiert und läuft ordnungsgemäß.

- ▲ *URCap-Fehler*: Das URCap ist installiert, aber kann nicht ausgeführt werden. Kontaktieren Sie den Entwickler des URCaps.
- **U***RCap-Neustart erforderlich*: Das URCap wurde gerade installiert und ein Neustart ist erforderlich.

Glossar

- *Stoppkategorie 0*: Die Roboterbewegung wird durch die sofortige Trennung der Stromversorgung zum Roboter gestoppt. Es ist ein ungesteuerter Stopp, bei dem der Roboter vom programmierten Pfad abweichen kann, da jedes Gelenk unvermittelt bremst. Dieser Sicherheitsstopp wird verwendet, wenn ein sicherheitsrelevanter Grenzwert überschritten wird oder eine Störung in den sicherheitsrelevanten Teilen des Steuersystems auftritt. Für weitere Informationen, siehe ISO 13850 oder IEC 60204-1.
- Stoppkategorie 1: Die Roboterbewegung wird gestoppt, indem der dem Roboter verbleibende Strom zum Erzielen des Stopps eingesetzt wird und die Stromversorgung getrennt wird, wenn der Stopp erzielt wurde. Es ist ein gesteuerter Stopp, bei dem der Roboter dem programmierten Pfad weiterhin folgt. Die Stromversorgung wird getrennt, sobald der Roboter still steht. Für weitere Informationen, siehe ISO 13850 oder IEC 60204-1.
- Stoppkategorie 2: Ein gesteuerter Stopp, bei dem dem Roboter weiterhin Strom zur Verfügung steht. Das sicherheitsrelevante Steuersystem überwacht, dass der Roboter in der Stopp-Position verbleibt. Für weitere Informationen, siehe ISO 13850 oder IEC 60204-1.
- Stoppkategorie 3: Der Begriff "Kategorie" ist nicht mit dem Begriff "Stoppkategorie" zu verwechseln. "Kategorie" bezieht sich auf den Architekturtyp, der als Grundlage für einen bestimmten "Performance Level" verwendet wird. Eine wesentliche Eigenschaft einer "Kategorie 3"-Architektur ist es, dass ein einzelner Fehler nicht zum Verlust der Sicherheitsfunktion führen kann. Für weitere Informationen, siehe ISO 13850 oder IEC 13849-1.
- *Performance Level (PL)*: Der Performance Level ist eine diskrete Stufe, die genutzt wird, um die Fähigkeit von sicherheitsrelevanten Teilen des Steuersystems zur Ausführung von Sicherheitsfunktionen unter vorhersehbaren Bedingungen auszudrücken. PLd ist die zweithöchste Zuverlässigkeitsklassifikation und steht für eine extrem zuverlässige Sicherheitsfunktion. Für weitere Informationen, siehe ISO 13850 oder IEC 13849-1.
- *Der Diagnosedeckungsgrad (DC)*: gibt die Wirksamkeit der Diagnose an, die für das Erreichen des angegebenen Performance Level implementiert ist. Für weitere Informationen, siehe ISO 13850 oder IEC 13849-1.
- *MTTFd*: Die Mittlere Zeit bis zu einem gefährlichen Ausfall (MTTFd) ist ein Wert auf Basis von Berechnungen und Tests, der dazu verwendet wird, den angegebenen Performance Level zu erreichen. Für weitere Informationen, siehe ISO 13850 oder IEC 13849-1.
- *Integrator*: Der Integrator legt die endgültige Roboterinstallation aus. Der Integrator ist für die abschließende Risikobewertung verantwortlich und muss sicherstellen, dass die endgültige Installation den örtlichen Gesetzen und Bestimmungen entspricht.

- *Risikobewertung*: Eine Risikobewertung umfasst den gesamten Vorgang der Identifizierung aller Risiken und deren Reduzierung auf ein angemessenes Niveau. Eine Risikobewertung sollte stets dokumentiert werden. Siehe ISO 12100 für weitere Informationen.
- *Kooperative Roboteranwendung*: Der Begriff "kolaborativ" bezieht sich auf das Zusammenwirken von Bediener und Roboter in einer Roboteranwendung. Für genaue Definitionen und Beschreibungen, siehe ISO 10218-1 und ISO 10218-2.
- *Sicherheitskonfiguration*: Sicherheitsrelevante Funktionen und Schnittstellen sind durch Sicherheitskonfigurationsparameter konfigurierbar. Diese werden über die Softwareschnittstelle definiert, siehe Teil II.

Index